## Study Title

# SATELLITE PROCEDURE GASOLINE ETBE VAPOR CONDENSATE RAT MICRONUCLEUS TEST AMENDED FINAL REPORT

**TEST GUIDELINES:**US EPA Micronucleus Assay 79.64, CFR Vol. 59, No. 122,<br/>27 June 1994.US EPA (1998) Health Effects Test Guidelines; OPPTS<br/>870.5395 Mammalian Erythrocyte Micronucleus Test.

AUTHOR: Lincoln Pritchard BSc (Hons.)

**STUDY COMPLETED ON:** 3 September 2010

AMENDED REPORT ISSUED ON: 20 October 2010

SUBCONTRACTOR: Huntingdon Life Sciences Ltd., Eye Research Centre (ERC) Eye, Suffolk IP23 7PX ENGLAND.

HUNTINGDON LIFE SCIENCES LTD (PRC) STUDY NO.: 00-6129

HUNTINGDON LIFE SCIENCES LTD (ERC) STUDY NO.: APT/007

SUBCONTRACTOR'S SPONSOR: Huntingdon Life Sciences Princeton Research Center (PRC) Mettlers Road East Millstone, NJ 08875-2360 USA

# CONTENTS

## Page

| COMPLIANCE WITH GOOD LABORATORY PRACTICE STANDARDS |
|----------------------------------------------------|
| ERC - QUALITY ASSURANCE STATEMENT                  |
| PRC - QUALITY ASSURANCE STATEMENT                  |
| RESPONSIBLE PERSONNEL AND SCIENTIFIC APPROVAL      |
| SUMMARY                                            |
| INTRODUCTION                                       |
| EXPERIMENTAL PROCEDURE                             |
| ASSESSMENT OF RESULTS                              |
| MAINTENANCE OF RECORDS                             |
| RESULTS                                            |
| DISCUSSION                                         |
| CONCLUSION                                         |
| REFERENCES                                         |

# **CONTENTS** - continued

# TABLES

| Table 1 | Slide set 1 - Summary of results and statistical analysis (males and females)                 | 24 |
|---------|-----------------------------------------------------------------------------------------------|----|
| Table 2 | Slide set 1- Results for individual animals                                                   | 26 |
| Table 3 | Slide set 2 - Summary of results and statistical analysis (males and females)                 | 28 |
| Table 4 | Slide set 2 - Results for individual animals                                                  | 30 |
| Table 5 | Combined summary of results and statistical analysis – Slide sets 1 and 2 (males and females) | 32 |

## APPENDICES

| Appendix 1 | Historical control values             | 34 |
|------------|---------------------------------------|----|
| Appendix 2 | Animal exposure and observations data | 36 |

Huntingdon Life Sciences (ERC) Internal Reference No: APT 007/022682

#### **COMPLIANCE WITH GOOD LABORATORY PRACTICE STANDARDS**

The slide evaluation phase of the study described in this report was conducted in compliance with the following Good Laboratory Practice standards and I consider the data generated to be valid.

The UK Good Laboratory Practice Regulations (Statutory Instrument 1999 No. 3106, as amended by Statutory Instrument 2004 No. 994).

OECD Principles of Good Laboratory Practice (as revised in 1997), ENV/MC/CHEM(98)17.

EC Commission Directive 1999/11/EC of 8 March 1999 (Official Journal No L 77/8), as amended by EC Commission Directive 2004/10/EC of 11 February 2004 (Official Journal No L 50/44).

US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994.

No compliance is claimed for work presented in the Experimental Procedure – In-life phase or Appendix 2 of this report.

The study was first reported on 3 September 2010. Amendment was required as an incorrect ERC - Quality Assurance Statement report audit date was issued within the PRC final report. The Quality Assurance Statement (page 5) has therefore been amended and the report re-issued.

Lincoln Pritchard BSc (Hons.) Principal Investigator, Huntingdon Life Sciences Ltd.

20 Ottoer 2010

I am claiming compliance for the whole study with the following exceptions:

The identity, strength, purity and composition or other characteristics to define the positive control article has not been determined by the Testing Facility. The positive control article has been characterized as per the Certificate of Analysis on file with the Testing Facility. The stability of the positive control article has not been determined by the Testing Facility. Analyses to determine the uniformity (as applicable) or concentration of the positive control mixture were not performed by the Testing Facility. The stability of the positive. The stability of the positive control article mixture has not been determined by the Testing Facility.

.....

Gary M. Hoffman, B.A., D.A.B.T., Study Director, Huntingdon Life Sciences

220ctio Date

Huntingdon Life Sciences (ERC) Internal Reference No: APT 007/022682

#### **ERC - QUALITY ASSURANCE STATEMENT**

The following inspection and audit have been carried out in relation to the slide evaluation phase of this study:

| Study Phase                     | Date of Inspection                                   | Date of Reporting to<br>Principal Investigator<br>and Test Site<br>Management | Date of Reporting to<br>Study Director, Test<br>Facility Management<br>and Lead QA |
|---------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| <b>Process Based Inspection</b> |                                                      |                                                                               |                                                                                    |
| Slide scoring                   | 5 March 2002                                         | 5 March 2002                                                                  |                                                                                    |
| Report Audit                    | 29 April 2002<br>11 April 2003<br>14-15 October 2004 | 29 April 2002<br>11 April 2003<br>15 October 2004                             | 30 April 2002<br>11 April 2003<br>15 October 2004                                  |
| Amended Report Audit            | 20 October 2010                                      | 20 October 2010                                                               | 20 October 2010                                                                    |

**Process Based Inspection**: At or about the time this phase of the study was in progress, inspections of routine and repetitive procedures employed on this type of study were carried out. The slide scoring inspection was conducted and reported to appropriate Company Management as indicated above.

**Report Audit:** This appendix has been audited by the Quality Assurance Department. This audit was conducted and reported to the Principal Investigator and Company Management as indicated above.

Study based inspections were not performed on this phase of the study.

The methods, procedures and observations were found to be accurately described and the reported results of this appendix to reflect the raw data.

Colin Sharman MRQA Lead Auditor Department of Quality Assurance Huntingdon Life Sciences Ltd

0 October 2010

Date

## **PRC - QUALITY ASSURANCE STATEMENT**

Listed below are the dates that this study was inspected by the Quality Assurance Unit of Huntingdon Life Sciences, East Millstone, New Jersey, and the dates that findings were reported to the Study Director and Management. This report reflects the raw data as far as can be reasonably established.

| Type of Inspection                                              | Date(s) of<br>Inspection | Reported to<br>Study Director and<br>Management |
|-----------------------------------------------------------------|--------------------------|-------------------------------------------------|
| GLP Protocol Review                                             | 24, 29 Aug 01            | 29 Aug 01                                       |
| Exposure (Charcoal Tube<br>Sampling)                            | 14 Dec 01                | 14 Dec 01                                       |
| Positive Dose Control<br>Preparation and Dose<br>Administration | 19 Dec 01                | 20 Dec 01                                       |
| Genotoxicity Necropsy                                           | 20 Dec 01                | 20 Dec 01                                       |
| Micronucleus Report                                             | 12-13 Jun 02             | 18 Jun 02                                       |

Fran Jannone, B.A., RQAP-GLP Quality Assurance Group Leader

20 Oc 10

Date

Huntingdon Life Sciences (ERC) Internal Reference No: APT 007/022682

## **RESPONSIBLE PERSONNEL AND SCIENTIFIC APPROVAL**

Octio Date

Gary M. Hoffman, B.A., D.A.B.T., Study Director Department of Safety Assessment, PRC.

~ シ

Lincoln Pritchard BSc (Hons.) Principal Investigator Department of Genetic Toxicology, ERC

Date

### SUMMARY

This satellite micronucleus study was designed to assess the potential induction of micronuclei by Gasoline ETBE Vapor Condensate in bone marrow cells of the rat. Animals were exposed for four weeks (5 days per week) by inhalation administration of the test substance at exposure levels of 2000, 10000 and 20000 mg/m<sup>3</sup>.

The test substance and negative control were administered by inhalation. The negative control group received clean air. A positive control group was dosed on one occasion by intraperitoneal injection, with cyclophosphamide at 40 mg/kg bodyweight.

Bone marrow smears were obtained from five male and five female animals in the negative control and each of the test substance groups 24 hours after the 20<sup>th</sup> exposure and from the positive control group 24 hours after dosing. One smear from each animal was examined for the presence of micronuclei in 2000 immature erythrocytes. The proportion of immature erythrocytes was assessed by examination of at least 1000 erythrocytes from each animal. A record of the incidence of micronucleated mature erythrocytes was also kept.

Following an equivocal result obtained from the first set of slides, an additional set of slides were stained and scored to ascertain if the result from the first set was reproducible.

No substantial decrease in the proportion of immature erythrocytes were observed in rats treated with Gasoline ETBE Vapor Condensate compared to negative control values throughout the test.

In slide set 2, although there was an apparent increase in the group mean mie with increasing concentration, none of the values from animals exposed to Gasoline ETBE Vapour condensate were statistically significant compared to the negative control value. The statistical significance seen in slide set 1 data was not reproduced in slide set 2.

The increases in the incidence of micronucleated immature erythrocytes (mie) reported in Slide set 1 and for data from the combined Slide set 1 and 2 were not considered to be of biological significance for the following reasons.

- The mean individual value for treated animals was within the historical control range throughout.
- The statistically significant increase observed in female animals (Slide set 1) was not dose related and was not reproduced in Slide set 2.
- The trend test for combined sexes was significant for Slide set 1 but was not significant for Slide set 2.

The positive control compound, Cyclophosphamide, produced large, highly significant increases in the frequency of micronucleated immature erythrocytes and a decrease in the proportion of immature erythrocytes (P<0.001 or P<0.01).

It is concluded that Gasoline ETBE Vapor Condensate did not show conclusive evidence of an increase in the frequency of micronuclei in immature erythrocytes, and did not show any evidence that it caused bone marrow cell toxicity when administered by inhalation exposure in this *in vivo* test procedure.

#### **INTRODUCTION**

The purpose of this satellite micronucleus study was to assess the potential of Gasoline ETBE Vapor Condensate to induce mutagenic effects in rats following inhalation administration using an *in vivo* cytogenetic system (Boller and Schmid 1970, MacGregor *et al* 1987, Mavournin *et al* 1990). The inhalation route was selected for use in this test as the most likely route of human exposure.

The procedures used were based on the recommendations of the following guidelines:

- US EPA Micronucleus Assay 79.64, CFR Vol. 59, No. 122, 27 June 1994.
- US EPA (1998) Health Effects Test Guidelines; OPPTS 870.5395 Mammalian Erythrocyte Micronucleus Test.

The bone marrow micronucleus test, originally developed by Matter and Schmid (1971), is a widely employed and internationally accepted short-term assay for identification of genotoxic effects (chromosome damage and aneuploidy) associated with mutagens and carcinogens (Mavournin *et al* 1990). This *in vivo* system allows consideration of various factors including pharmacokinetics, metabolism and DNA repair which cannot be accurately modelled in an *in vitro* system. Young adult rats are chosen for use because of the high rate of cell division in the bone marrow, because of the wealth of background data on this species, and because of their general suitability for toxicological investigations.

In mitotic cells in which chromosomal breakage has been caused by the test substance or its metabolites, acentric fragments of the chromosomes do not separate at the anaphase stage of cell division. After telophase these fragments may not be included in the nuclei of the daughter cells and hence will form single or multiple micronuclei (Howell-Jolly bodies) in the cytoplasm of these cells. Micronuclei are seen in a wide variety of cells, but erythrocytes are chosen for examination since micronuclei are not obscured by the main nucleus and are therefore easily detected in this cell type (Boller and Schmid 1970).

Micronucleated immature erythrocytes appear in the bone marrow approximately 24 hours after induction of chromosome damage. These immature erythrocytes can be differentiated by a variety of staining techniques which rely on their relatively high content of residual RNA. Using the Feulgen method, they stain blue while mature erythrocytes (which contain little RNA) are counterstained orange. An increased incidence of micronucleated immature erythrocytes is indicative of recent exposure to a chromosome-damaging agent. A simultaneous marked increase in the incidence of micronucleated mature erythrocytes is not expected and may be indicative of micronucleus-like artifacts (Schmid 1976).

Substances which interfere with the mitotic spindle apparatus will cause non-disjunction (unequal separation of the chromosomes at anaphase resulting in aneuploidy) or lagging chromosomes at anaphase which may not be incorporated into the daughter nuclei. These lagging chromosomes are not excluded from the erythroblast with the main nucleus and hence also give rise to micronuclei.

Any toxic effects of the test substance on the nucleated cells may lead either to a reduction in cell division or to cell death. These effects in turn lead to a reduction in the number of nucleated cells and immature erythrocytes; to compensate for this, peripheral blood is shunted into the bone marrow (von Ledebur and Schmid 1973). If the proportion of immature erythrocytes is found to be significantly less than the control value, this is taken as being indicative of toxicity. A very large decrease in the proportion would be indicative of a cytostatic or cytotoxic effect.

The slide evaluation phase of the satellite micronucleus study was performed at the Department of Genetic Toxicology, Huntingdon Life Sciences (ERC), Eye, Suffolk, IP23 7PX, England.

The experimental start and completion dates of the slide evaluation phase of the study were 23 January 2002 and 17 February 2003 respectively.

### **EXPERIMENTAL PROCEDURE**

#### In-life phase

The in-life phase of the study was carried out at the Princeton Research Center starting on 23 November 2001 and was completed on 20 December 2001.

All animals in the negative control and test substance groups were exposed for four weeks (5 days per week) by inhalation. The non-exposed positive control group was dosed with Cyclophosphamide administered on one occasion by intraperitoneal injection at a volume dosage of 10 ml/kg bodyweight. Cyclophosphamide (CP, CAS # 6055-19-2, lot number 108H0568, received 28 August 2001, expiration 30 June 2002, white powder, storage 2-8°C, purity 99.2%), was obtained from the Sigma Chemical Company (responsible for its characterization), and was dissolved and diluted in sterile distilled water at Huntingdon Life Sciences to stock concentrations of 4.0 mg/mL for use as the positive control for the micronucleus study.

The experimental design is shown below:

| Group | Treatment        | <b>Exposure Level</b> | Animal I    | Animal Numbers |  |  |
|-------|------------------|-----------------------|-------------|----------------|--|--|
|       |                  | (mg/m <sup>3)</sup>   | Male        | Female         |  |  |
| 1     | Air control      | -                     | 1081 - 1085 | 1591 – 1595    |  |  |
| 2     | Test Substance   | 2000                  | 2071 - 2075 | 2581 - 2585    |  |  |
| 3     | Test Substance   | 10000                 | 3071 - 3075 | 3581 - 3585    |  |  |
| 4     | Test Substance   | 20000                 | 4081 - 4085 | 4591 - 4595    |  |  |
| 6     | Cyclophosphamide | 40 (mg/kg)            | 6051 - 6055 | 6561 - 6565    |  |  |

Five males and five females from the negative control and each of the test substance groups were sacrificed 24 hours after the final exposure period by isoflurane inhalation/exsanguination. Five males and five females from the positive control group were sacrificed 24 hours after CP dosing by  $CO_2$  inhalation/exsanguination. Both femurs were exposed, cut just above the knee and the bone marrow was aspirated into a syringe containing a small volume (about 0.5 mL) of serum. The cells were then flushed into a centrifuge tube of cold serum. The tubes were identified by labels containing the study, group number, and animal number.

The bone marrow cells were pelleted by centrifugation at about  $150 \times g$  for about 5 min and the supernatant drawn off, leaving a small amount of serum with the cell pellet. The cells were resuspended by aspiration with a pasteur pipette and a small drop of cells was spread onto a clean glass slide. Four slides were prepared from each animal.

The slides were allowed to air dry, fixed by dipping for about 3 to 10 minutes in methanol, and aged overnight or longer prior to staining. Slides were labelled with experiment and animal number using a lead pencil.

Two slides from each animal were despatched to Huntingdon Life Sciences (ERC), Eye, Suffolk, IP23 7PX, England for slide staining and analysis. The remaining 2 smears and the cell pellet (refrigerated) were held in reserve at PRC in case of technical problems with the first 2 smears.

#### Slide evaluation

Due to the presence of mast cell granules in rat bone smears, which appear identical to micronuclei when stained using the Romanowsky methods, a modified Feulgen staining method is employed for the rat micronucleus test in this laboratory. This method specifically stains DNA-containing bodies deep purple while leaving mast cell granules unstained. The method also allows reasonable differentiation of mature and immature erythrocytes and produces permanent preparations.

One slide from each animal was stained as follows, the remaining slide was held in reserve:

- 1. Hydrolysed in Bouin's fluid at room temperature for approximately 30 hours.
- 2. Washed three times in purified water (5 minutes per wash).
- 3. Stained in Schiff's reagent for one hour at room temperature.
- 4. Washed three times in purified water (5 minutes per wash).
- 5. Counter-stained for ten minutes in very dilute (approximately 0.06 g/l) aqueous Eosin yellowish.
- 6. Washed for five minutes in purified water.
- 7. Stained for 30 minutes in Mayer's Haemalum diluted 9 volumes: 1 volume with aqueous acridine orange solution in purified water (1 mg/ml).
- 8. Rinsed in purified water.
- 9. Rinsed in running tap water.
- 10. Washed for 5 minutes in purified water.
- 11. Air-dried.
- 12. Slides were mounted with coverslips using DPX mountant.
- 13. The mountant was allowed to harden at approximately 37°C.

*NB* All stains and Bouin's fluid were filtered immediately prior to use to remove particulate material.

The stained smears were examined (under code) by light microscopy to determine the incidence of micronucleated cells per 2000 polychromatic erythrocytes per animal. One smear per animal was examined. The remaining smears were held temporarily in reserve in case of technical problems with the first smear.

Micronuclei are identified by the following criteria:

- Large enough to discern morphological characteristics
- Should possess a generally rounded shape with a clearly defined outline
- Should be deeply stained and similar in colour to the nuclei of other cells not black
- Should lie in the same focal plane as the cell
- Lack internal structure, *ie* they are pyknotic
- There should be no micronucleus-like debris in the area surrounding the cell

The proportion of immature erythrocytes for each animal was assessed by examination of at least 1000 erythrocytes. A record of the number of micronucleated mature erythrocytes observed during assessment of this proportion was also kept as recommended by Schmid (1976).

Following the results of the slide reading from the first set of slides, a further slide from each animal was stained, according to the previously reported method, and microscope analysis was performed.

#### **Deviations from Protocol**

This phase of the study was conducted in compliance with the following additional Good Laboratory Practice Standards:

The UK Good Laboratory Practice Regulations (Statutory Instrument 1999 No. 3106, as amended by Statutory Instrument 2004 No. 994).

OECD Principles of Good Laboratory Practice (as revised in 1997), ENV/MC/CHEM(98)17.

EC Commission Directive 1999/11/EC of 8 March 1999 (Official Journal No L 77/8), as amended by EC Commission Directive 2004/10/EC of 11 February 2004 (Official Journal No L 50/44).

US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994.

## **ASSESSMENT OF RESULTS**

The results for each treatment group were compared with the results for the concurrent negative control group using non-parametric statistics. Non-parametric statistical methods were chosen for analysis of results because:

- They are suited to analysis of data consisting of discrete/integer values with ties such as the incidence of micronucleated immature erythrocytes.
- The methods make few assumptions about the underlying distribution of data and therefore the values do not require transformation to fit a theoretical distribution (where data can be approximately fitted to a normal distribution, the results of non-parametric analysis and classical analysis of variance are very similar).
- 'Outliers' are frequently found in the proportion of immature erythrocytes for both control and treated animals; non-parametric analysis based on rank does not give these values an undue weighting.

For incidences of micronucleated immature erythrocytes, exact one-sided p-values are calculated by permutation (StatXact, CYTEL Software Corporation, Cambridge, Massachussetts). Comparison of several dose levels is made with the concurrent control using the Linear by Linear Association test for trend, in a step-down fashion if significance is detected (Agresti *et al.* 1990); for individual inter-group comparisons (*ie* the positive control group) this procedure simplifies to a straightforward permutation test (Gibbons 1985). For assessment of effects on the proportion of immature erythrocytes, equivalent permutation tests based on rank scores are used, *ie* exact versions of Wilcoxon's sum of ranks test and Jonckheere's test for trend.

A positive response is normally indicated by a statistically significant dose-related increase in the incidence of micronucleated immature erythrocytes for the treatment group compared with the concurrent control group (P<0.01); individual and/or group mean values should exceed the laboratory historical control range (Morrison and Ashby 1995).

A negative result is indicated where individual and group mean incidences of micronucleated immature erythrocytes for the group treated with the test substance are not significantly greater than incidences for the concurrent control group and where these values fall within the historical control range. An equivocal response is obtained when the results do not meet the criteria specified for a positive or negative response.

Bone marrow cell toxicity (or depression) is normally indicated by a substantial and statistically significant dose-related decrease in the proportion of immature erythrocytes (P < 0.01).

### MAINTENANCE OF RECORDS

All raw data, samples and specimens arising from the performance of this phase of the study will remain the property of the Sponsor.

Types of sample and specimen that are unsuitable, by reason of instability, for long term retention and archiving may be disposed after the periods stated in Huntingdon Life Sciences, Standard Operating Procedures.

All other samples and specimens and all raw data will be retained by Huntingdon Life Sciences PRC in its archive for a period of one year from the date on which the Study Director signs the final report. After such time, the Sponsor will be contacted and their advice sought on the return, disposal or further retention of the materials. If requested, Huntingdon Life Sciences will continue to retain the materials subject to a reasonable fee being agreed with the Sponsor.

Huntingdon Life Sciences will retain the Quality Assurance records relevant to this study and a copy of the final report in its archive indefinitely.

## RESULTS

#### **MICRONUCLEUS TEST**

#### SLIDE SET 1

Initially, one slide per animal was scored (Slide set 1) and the results for individual animals are presented in Table 2.

#### Micronucleated immature erythrocyte counts (mie)

Individual values of micronucleated immature erythrocytes (mie) were observed in the range 0-2 for animals in the negative control group and animals exposed to Gasoline ETBE Vapor Condensate at the lowest level. At the intermediate and high exposure levels the range was 0-4.

Group mean values for the intermediate and high exposure levels (2.7 and 2.4 respectively) showed some increase over the group mean negative control value (1.2) and were outside the group mean historical control range.

Statistical analysis was performed on pooled data from both sexes and also from males and females separately (Table 1).

#### Permutation or Wilcoxon test

Statistical analysis showed no significant increases in the number of mie in rats treated with the test substance at any concentration, compared to negative control values, when male and female animals were combined.

When statistical analysis was performed using data from male animals only, there was no statistically significant increase over negative control values at any concentration.

Data from female animals showed a statistically significant increase in the number of mie at the intermediate dose group (10000 mg/m<sup>3</sup>) only (P<0.01). No significant increase was recorded for the low and high dose groups.

Cyclophosphamide caused significant increases in the frequency of mie when the sexes were combined and significant increases for males and females individually (P<0.001 and P<0.01 respectively).

#### Linear by Linear trend test

Using combined sex data, there was a significant increase when groups 1 to 4 were included in the analysis (P<0.01). The trend test was not significant when Group 4 was excluded (high dose group). The increased incidence in Group 3 was not sufficient to give a statistically significant trend test.

When data was analysed for the individual sexes, no statistically significant trend was recorded for either males or females.

#### SLIDE SET 2

A further set of slides was scored (Slide set 2), at the request of the Sponsor, to ascertain if the results from Slide set 1 were reproducible. The results for individual animals are presented in Table 4.

#### Micronucleated immature erythrocyte counts (mie)

Individual values of mie were observed in the range 0-3 for animals in the negative control group and for animals exposed to ETBE Vapor Condensate at 2000, 10000 and 20000 mg/m<sup>3</sup> the ranges were 0-6, 1-6 and 1-7, respectively.

The group mean value for the negative control group was 1.8 and for the test substance treated groups was 2.2, 2.8 and 2.7, respectively.

Statistical analysis was performed on pooled data from both sexes and also from males and females separately (Table 3).

### Permutation or Wilcoxon test

Statistical analysis showed no significant increases in the number of mie in rats treated with the test substance at any concentration, compared to negative control values, when data from male and female animals were combined or for the separate sexes.

Cyclophosphamide caused significant increases in the frequency of mie when the sexes were combined and significant increases for males and females individually (P<0.001 and P<0.01 respectively).

#### Linear by Linear trend test

The Linear by Linear trend test was not significant when male and females were combined or for the separate sexes.

## **COMBINED RESULTS – Slide sets 1 and 2**

Data from Slide set 1 and Slide set 2 were combined.

### Micronucleated immature erythrocyte counts (mie)

The group mean value of mie observed for animals in the negative control group and the low exposure group  $(2000 \text{ mg/m}^3)$  was 1.5. At the intermediate and high exposure levels it was 2.8 and 2.6, respectively.

Statistical analysis was performed on pooled data from both sexes and also from males and females separately (Table 5).

#### Permutation or Wilcoxon test

Statistical analysis showed no significant increases in the number of mie in rats treated with the test substance at any concentration, compared to negative control values, when male and female animals were combined.

When statistical analysis was performed using data from male animals only, there was no statistically significant increase over negative control values at any concentration.

Data from female animals showed a statistically significant increase at the intermediate dose group  $(10000 \text{ mg/m}^3)$  only (P<0.01). No significant increase was recorded for the low and high dose groups.

Cyclophosphamide caused significant increases in the frequency of mie when the sexes were combined and significant increases for males and females individually (P<0.001 and P<0.01 respectively).

### Linear by Linear trend test

Using combined sex data, there was a significant increase when groups 1 to 4 were included in the analysis and with Group 4 excluded (P < 0.01).

When data was analysed for the individual sexes, no statistically significant trend was recorded for males or females.

### **COMBINED RESULTS – Slide sets 1 and 2**

#### Micronucleated mature erythrocytes (mme)

The test substance did not cause any substantial increases in the incidence of micronucleated mature erythrocytes for Slide sets 1 and 2 and the combined data.

## Proportion of immature erythrocytes (% ie/[ie + me])

The test substance failed to cause any significant decreases in the proportion of immature erythrocytes for Slide sets 1 and 2 and the combined data.

Cyclophosphamide caused statistically significant decreases in the proportion for the combined data and Slide sets 1 and 2, except for female animals in Slide set 1, when no statistical significance was recorded but there was a reduction compared to negative control values.

#### DISCUSSION

A statistically significant increase in the incidence of micronucleated immature erythrocytes (mie) was recorded for female animals exposed to Gasoline ETBE Vapor Condensate at the intermediate dose group only (10000 mg/m<sup>3</sup>) for Slide set 1 and the combined data. This increase was not dose related. In Slide set 2 there were no statistically significant increases for males or females, indicating that the result for Slide set 1 was not reproduced.

There was a significant linear trend for data from both males and females pooled together in Slide set 1 and when all data were combined. A significant linear trend was not seen when sexes were analysed separately.

In slide set 2, although there was an apparent increase in the group mean mie with increasing concentration, none of the values from animals exposed to Gasoline ETBE Vapour condensate were statistically significant compared to the negative control value.

One male animal from Slide set 2 showed an individual value (7) outside the historical control range for this laboratory (range 1 to 6). No animal from any dose group showed a mean individual value (Slide set 1 +Slide set  $2 \div 2$ ) outside the historical control range.

Increases in the incidence of mie were not considered to be of biological significance for the following reasons.

- The mean individual value for treated animals was within the historical control range throughout.
- The statistically significant increase observed in female animals (Slide set 1) was not dose related and not reproduced in Slide set 2.
- The trend test for combined sexes was significant for Slide set 1 but was not significant for Slide set 2.

## CONCLUSION

Gasoline ETBE Vapor Condensate did not show conclusive evidence of an increase in the frequency of micronuclei in immature erythrocytes, and did not show any evidence that it caused bone marrow cell toxicity when administered by inhalation exposure in this *in vivo* test procedure.

## REFERENCES

AGRESTI, A., MEHTA, C.R. and PATEL, N.R. (1990) Exact inference for contingency tables with ordered categories. *Journal of the American Statistical Association*, **85**, 453.

BOLLER, K. and SCHMID, W. (1970) Chemical mutagenesis in mammals. The bone marrow of the Chinese hamster as an *in vivo* test system. Haematological findings after treatment with Trenimon (translation). *Humangenetik*, **11**, 34.

CYTEL (1995) *StatXact 3 for Windows: Statistical Software for Exact Nonparametric Inference*. Cytel Software Corporation, NC, USA.

GIBBONS, J.D. (1985) Nonparametric Statistical Inference, 2nd edition, Marcel Dekker, New York.

JONCKHEERE, A.R. (1954) A distribution-free k-sample test against ordered alternatives. *Biometrics*, **41**, 133-145.

KRUSKAL, W.H. and WALLIS, W.A. (1952) Use of Ranks in One-Criterion Variance Analysis. *Journal of the American Statistical Association*, **47**, 583-621.

KRUSKAL, W.H. and WALLIS, W.A. (1953) Errata for Kruskal-Wallis (1952). *Journal of the American Statistical Association*, **47**, 583-621.

MacGREGOR, J.T., HEDDLE, J.A., HITE, M., MARGOLIN, B.H., RAMEL, C., SALAMONE, M.F., TICE, R.R. and WILD, D. (1987) Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. *Mutation Research*, **189**, 103.

MATTER, B. and SCHMID, W. (1971) Trenimon-induced chromosomal damage in bone marrow cells of six mammalian species, evaluated by the micronucleus test. *Mutation Research*, **12**, 417.

MAVOURNIN, K.H., BLAKEY, D.H., CIMINO, M.C., SALAMONE, M.F. and HEDDLE, J.A. (1990) The *in vivo* micronucleus assay in mammalian bone marrow and peripheral blood. A report of the US Environmental Protection Agency Gene-Tox Program. *Mutation Research*, **239**, 29.

MORRISON, V. and ASHBY, J. (1995) High resolution rodent bone marrow micronucleus assays of 1,2dimethylhydrazine : implication of systemic toxicity and individual responders. *Mutagenesis*, **10**, 129.

SAS INSTITUTE (1989) SAS/STAT User's Guide, Version 6, Fourth Edition, Vol.2. SAS Institute Inc., Cary, NC, USA.

SAS INSTITUTE (1996) SAS/STAT Software: Changes and Enhancements through Release 6.11. SAS Institute, Cary, NC, USA.

SAS INSTITUTE (1996) *SAS/STAT Software:* Changes and Enhancements for Release 6.12. SAS Institute, Cary, NC, USA.

SAS INSTITUTE (1996) *SAS/STAT Software:* Changes and Enhancements for Release 6.12. SAS Institute, Cary, NC, USA.

SCHMID, W. (1976) The micronucleus test for cytogenetic analysis. In: HOLLANDER, A. (ed.) *Chemical Mutagens, Principles and Methods for their Detection*, **4**, 31. Published by Plenum Press, New York.

von LEDEBUR, M. and SCHMID, W. (1973) The micronucleus test. Methodological aspects. *Mutation Research*, **19**, 109.

WILCOXON, F. (1945). Individual comparisons by ranking methods. *Biometrics Bulletin*, 1, 80-83.

| Sampling      | Treatment        | Exposure level | Proportion of ie | Incidence mie    | Incidence mme       |
|---------------|------------------|----------------|------------------|------------------|---------------------|
| time after    |                  | 2              | Ť                |                  | -                   |
| last exposure |                  | $(mg/m^3)$     | $(Mean \pm SD)$  | $(Mean \pm SD)$  | $(Mean \pm SD)^{a}$ |
| 24 Hours      | Negative control | -              | $45 \pm 36$      | $1.2 \pm 1.0$    | $0.0 \pm 0.0$       |
|               | TS               | 2000           | $46 \pm 2.5$     | $0.8\pm0.6$      | $0.0\pm0.0$         |
|               | TS               | 10000          | $45 \pm 3.2$     | $2.7 \pm 1.7$    | $0.0 \pm 0.0$       |
|               | TS               | 20000          | $45 \pm 2.5$     | $2.4 \pm 1.5$ ** | $0.0 \pm 0.0$       |
|               | Cyclophosphamide | 40 mg/kg       | $37 \pm 3.4$ *** | 22.7 ± 6.9***    | $0.6 \pm 0.0$       |

## Table 1 Slide set 1 - Summary of results and statistical analysis (males and females)

| TS               | Gasoline ETBE Vapor Condensate                                                                                                                                                                |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ie               | Immature erythrocytes                                                                                                                                                                         |
| mie              | Number of micronucleated cells observed per 2000 immature erythrocytes examined                                                                                                               |
| me               | Mature erythrocytes                                                                                                                                                                           |
| mme              | Number of micronucleated cells observed and calculated per 2000 mature erythrocytes                                                                                                           |
| SD               | Standard deviation                                                                                                                                                                            |
| mie<br>me<br>mme | Number of micronucleated cells observed per 2000 immature erythrocytes examined<br>Mature erythrocytes<br>Number of micronucleated cells observed and calculated per 2000 mature erythrocytes |

Results of statistical analysis using the appropriate nonparametric method of analysis based on permutation (one-sided probabilities):

| ***       | P < 0.001 | (Highly significant - Permutation or Wilcoxon test)                                                                    |  |
|-----------|-----------|------------------------------------------------------------------------------------------------------------------------|--|
| **        | P<0.01    | (Significant for Linear by Linear trend test when<br>groups 1 to 4 included. Not significant when Group<br>4 excluded) |  |
| otherwise | P > 0.01  | (Not significant)                                                                                                      |  |

<sup>†</sup> Occasional apparent errors of  $\pm 1\%$  may occur due to rounding of values for presentation in the table

<sup>a</sup> Formula for calculation of incidence **mme** (group mean):

Sum of group incidence **mme** scored x 2000 Sum of group **me** scored

| Sampling time after | Treatment        | Exposure level $(mg/m^3)$ | Proportion of ie † | Incidence mie     | Incidence mme       |
|---------------------|------------------|---------------------------|--------------------|-------------------|---------------------|
| last exposure       |                  | (8,)                      | $(Mean \pm SD)$    | $(Mean \pm SD)$   | $(Mean \pm SD)^{a}$ |
|                     |                  | MA                        | LES                |                   |                     |
| 24 hours            | Negative control | -                         | $45 \pm 2.4$       | $1.6 \pm 0.9$     | $0.0 \pm 0.0$       |
|                     | TS               | 2000                      | $46 \pm 2.3$       | $0.6 \pm 0.5$     | $0.0 \pm 0.0$       |
|                     | TS               | 10000                     | $45 \pm 3.8$       | $1.6 \pm 1.8$     | $0.0 \pm 0.0$       |
|                     | TS               | 20000                     | $46 \pm 1.8$       | $2.8\pm0.8$       | $0.0 \pm 0.0$       |
|                     | Cyclophosphamide | 40 (mg/kg)                | $37 \pm 1.4$ **    | $25.8 \pm 4.5 **$ | $1.2 \pm 0.5$       |
|                     |                  | FEM                       | ALES               |                   |                     |
| 24 hours            | Negative control | -                         | $45 \pm 4.7$       | $0.8 \pm 1.1$     | $0.0\pm0.0$         |
|                     | TS               | 2000                      | $45 \pm 2.9$       | $1.0 \pm 0.7$     | $0.0 \pm 0.0$       |
|                     | TS               | 10000                     | $45 \pm 2.8$       | $3.8 \pm 0.4$ **  | $0.0 \pm 0.0$       |
|                     | TS               | 20000                     | $44 \pm 3.2$       | $2.0 \pm 2.0$     | $0.0\pm0.0$         |
|                     | Cyclophosphamide | 40 (mg/kg)                | $38\pm4.8$         | $19.6 \pm 8.0$ ** | $0.0\pm0.0$         |

| Table 1 - Slide set 1 - | - Summary of results and | statistical analysis | (separate sexes) - continued | ł |
|-------------------------|--------------------------|----------------------|------------------------------|---|
|                         |                          |                      |                              |   |

| TS  | Gasoline ETBE Vapor Condensate                                                      |
|-----|-------------------------------------------------------------------------------------|
| ie  | Immature erythrocytes                                                               |
| mie | Number of micronucleated cells observed per 2000 immature erythrocytes examined     |
| me  | Mature erythrocytes                                                                 |
| mme | Number of micronucleated cells observed and calculated per 2000 mature erythrocytes |
| SD  | Standard deviation                                                                  |

Results of statistical analysis using the appropriate nonparametric method of analysis based on permutation (one-sided probabilities):

| ** P < 0.01          | (Significant - Permutation test) |
|----------------------|----------------------------------|
| otherwise $P > 0.01$ | (Not significant)                |

 $\dagger$  Occasional apparent errors of  $\pm$  1% may occur due to rounding of values for presentation in the table

<sup>a</sup> Formula for calculation of incidence mme (group mean):

Sum of group incidence **mme** scored x 2000 Sum of group **me** scored

| Treatment        | Exposure level | Animal | ie  | me  | Proportion of | Incidence                                  | Incidence |
|------------------|----------------|--------|-----|-----|---------------|--------------------------------------------|-----------|
|                  | $(mg/m^3)$     | number |     |     | ie            | mie                                        | mme       |
| Negative control | _              | M 1081 | 644 | 701 | 48            | 2                                          | 0         |
|                  |                | M 1082 | 440 | 592 | 43            | 2<br>2                                     | Ō         |
|                  |                | M 1083 | 665 | 761 | 47            | 0                                          | 0         |
|                  |                | M 1084 | 460 | 608 | 43            | $ \begin{array}{c} 0\\ 2\\ 2 \end{array} $ | 0         |
|                  |                | M 1085 | 501 | 663 | 43            | 2                                          | 0         |
|                  |                | F 1591 | 599 | 671 | 47            | 0                                          | 0         |
|                  |                | F 1592 | 436 | 628 | 41            | 0                                          | 0         |
|                  |                | F 1593 | 520 | 571 | 48            | 2                                          | 0         |
|                  |                | F 1594 | 511 | 523 | 49            | 0                                          | 0         |
|                  |                | F 1595 | 400 | 640 | 38            | 2                                          | 0         |
| TS               | 2000           | M 2071 | 602 | 635 | 49            | 1                                          | 0         |
|                  |                | M 2072 | 479 | 531 | 47            | 0                                          | 0         |
|                  |                | M 2073 | 460 | 588 | 44            | 1                                          | 0         |
|                  |                | M 2074 | 567 | 609 | 48            | 1                                          | 0         |
|                  |                | M 2075 | 461 | 589 | 44            | 0                                          | 0         |
|                  |                | F 2581 | 604 | 740 | 45            | 2                                          | 0         |
|                  |                | F 2582 | 452 | 602 | 43            | 1                                          | 0         |
|                  |                | F 2583 | 503 | 576 | 47            | 1                                          | 0         |
|                  |                | F 2584 | 605 | 614 | 50            | 1                                          | 0         |
|                  |                | F 2585 | 432 | 580 | 43            | 0                                          | 0         |
| TS               | 10000          | M 3071 | 411 | 600 | 41            | 1                                          | 0         |
| -~               |                | M 3072 | 558 | 632 | 47            | 4                                          | Ō         |
|                  |                | M 3073 | 554 | 621 | 47            | 0                                          | 0         |
|                  |                | M 3074 | 549 | 589 | 48            | 3                                          | 0         |
|                  |                | M 3075 | 460 | 678 | 40            | 0                                          | 0         |
|                  |                | F 3581 | 594 | 635 | 48            | 3                                          | 0         |
|                  |                | F 3582 | 470 | 591 | 44            | 4                                          | 0         |
|                  |                | F 3583 | 454 | 642 | 41            | 4                                          | 0         |
|                  |                | F 3584 | 451 | 601 | 43            | 4                                          | 0         |
|                  |                | F 3585 | 590 | 673 | 47            | 4                                          | 0         |
| TS               | 20000          | M 4081 | 557 | 635 | 47            | 3                                          | 0         |
| -~               |                | M 4082 | 513 | 589 | 47            | 2                                          | Ō         |
|                  |                | M 4083 | 452 | 601 | 43            | 4                                          | 0         |
|                  |                | M 4084 | 532 | 659 | 45            | 3<br>2<br>4<br>3<br>2<br>2                 | Ō         |
|                  |                | M 4085 | 506 | 565 | 47            | 2                                          | Ō         |
|                  |                | F 4591 | 495 | 593 | 45            | 2                                          | 0         |
|                  |                | F 4592 | 511 | 561 | 48            | $\overline{0}$                             | Ō         |
|                  |                | F 4593 | 493 | 639 | 44            | 4                                          | Õ         |
|                  |                | F 4594 | 470 | 725 | 39            | 4                                          | 0         |
|                  |                | F 4595 | 601 | 710 | 46            | 0                                          | 0         |

TS Gasoline ETBE Vapor Condensate ie

Immature erythrocytes

Number of micronucleated cells observed per 2000 immature erythrocytes mie me

Total number of mature erythrocytes examined for micronuclei

Number of micronucleated mature erythrocytes observed mme

| Treatment        | Dosage<br>(mg/kg) | Animal<br>number | ie  | me  | Proportion of<br>ie | Incidence<br>mie | Incidence<br>mme |
|------------------|-------------------|------------------|-----|-----|---------------------|------------------|------------------|
| Cyclophosphamide | 40 mg/kg          | M 6051           | 397 | 673 | 37                  | 28               | 1                |
|                  |                   | M 6052           | 403 | 693 | 37                  | 32               | 1                |
|                  |                   | M 6053           | 395 | 711 | 36                  | 22               | 0                |
|                  |                   | M 6054           | 367 | 686 | 35                  | 21               | 0                |
|                  |                   | M 6055           | 445 | 706 | 39                  | 26               | 0                |
|                  |                   | F 6561           | 433 | 663 | 40                  | 24               | 0                |
|                  |                   | F 6562           | 371 | 700 | 35                  | 18               | 0                |
|                  |                   | F 6563           | 365 | 674 | 35                  | 12               | 0                |
|                  |                   | F 6564           | 486 | 577 | 46                  | 13               | 0                |
|                  |                   | F 6565           | 390 | 731 | 35                  | 31               | 0                |

Immature erythrocytes

ie

mie

me

Number of micronucleated cells observed per 2000 immature erythrocytes

Total number of mature erythrocytes examined for micronuclei

mme Number of micronucleated mature erythrocytes observed

| Sampling time<br>after<br>last exposure | Treatment        | Exposure<br>level<br>(mg/m <sup>3</sup> ) | Proportion of<br>ie †<br>(Mean ± SD) | Incidence mie<br>(Mean ± SD) | Incidence mme $(Mean \pm SD)^a$ |
|-----------------------------------------|------------------|-------------------------------------------|--------------------------------------|------------------------------|---------------------------------|
| 24 Hours                                | Negative control | -                                         | 49 ± 3.6                             | $1.8 \pm 1.0$                | 0.4 ± 0.3                       |
|                                         | TS               | 2000                                      | $48 \pm 5.0$                         | $2.2 \pm 1.7$                | $1.1 \pm 0.5$                   |
|                                         | TS               | 10000                                     | $50 \pm 4.4$                         | $2.8 \pm 1.5$                | $0.0 \pm 0.0$                   |
|                                         | TS               | 20000                                     | $48 \pm 6.8$                         | $2.7 \pm 1.8$                | $0.4 \pm 0.3$                   |
|                                         | Cyclophosphamide | 40 mg/kg                                  | 31 ± 5.1***                          | 23.8 ± 10.3***               | $1.3 \pm 0.7$                   |

## Table 3 Slide set 2 - Summary of results and statistical analysis (males and females)

| TS  | Gasoline ETBE Vapor Condensate                                                  |
|-----|---------------------------------------------------------------------------------|
| ie  | Immature erythrocytes                                                           |
| mie | Number of micronucleated cells observed per 2000 immature erythrocytes examined |
| me  | Mature erythrocytes                                                             |
| mme | Number of micronucleated cells calculated per 2000 mature erythrocytes          |
| SD  | Standard deviation                                                              |

Results of statistical analysis using the appropriate nonparametric method of analysis based on permutation (one-sided probabilities):

\*\*\* P < 0.001 (Highly significant – Permutation or Wilcoxon test)

otherwise P > 0.01 (not significant)

 $\dagger$  Occasional apparent errors of  $\pm$  1% may occur due to rounding of values for presentation in the table

<sup>a</sup> Formula for calculation of incidence mme (group mean):

Sum of group incidence **mme** scored x 2000 Sum of group **me** scored

| Sampling time after | Treatment Exposure level |            | Proportion of        | Incidence mie      | Incidence mme     |
|---------------------|--------------------------|------------|----------------------|--------------------|-------------------|
| last exposure       |                          | $(mg/m^3)$ | ie † $(Mean \pm SD)$ | (Mean $\pm$ SD)    | $(Mean \pm SD)^a$ |
|                     |                          | MA         | LES                  |                    |                   |
| 24 hours            | Negative control         | -          | $50 \pm 2.7$         | $2.2 \pm 0.8$      | $0.0 \pm 0.0$     |
|                     | TS                       | 2000       | $51 \pm 2.6$         | $1.2 \pm 0.8$      | $0.8 \pm 0.4$     |
|                     | TS                       | 10000      | $51 \pm 4.4$         | $2.4 \pm 1.1$      | $0.0 \pm 0.0$     |
|                     | TS                       | 20000      | $48 \pm 7.5$         | $2.8 \pm 2.5$      | $0.0 \pm 0.0$     |
|                     | Cyclophosphamide         | 40 (mg/kg) | $32 \pm 3.8**$       | $30.0 \pm 10.9 **$ | $1.5 \pm 0.9$     |
|                     |                          | FEMA       | ALES                 |                    |                   |
| 24 hours            | Negative control         | -          | $49\pm4.6$           | $1.4 \pm 1.1$      | $0.8 \pm 0.4$     |
|                     | TS                       | 2000       | $44 \pm 4.1$         | $3.2 \pm 1.8$      | $1.4 \pm 0.5$     |
|                     | TS                       | 10000      | $48 \pm 4.2$         | $3.2 \pm 1.9$      | $0.0 \pm 0.0$     |
|                     | TS                       | 20000      | $47 \pm 6.8$         | $2.6\pm0.9$        | $0.7\pm0.4$       |
|                     | Cyclophosphamide         | 40 (mg/kg) | $30 \pm 6.3$ **      | $17.6 \pm 5.1$ **  | $1.1 \pm 0.5$     |

| Table 3 - Slide set 2 | <ul> <li>Summary of results and</li> </ul> | statistical analysis | (separate sexes) - continued |
|-----------------------|--------------------------------------------|----------------------|------------------------------|
|-----------------------|--------------------------------------------|----------------------|------------------------------|

 IS
 Gasoline ETBE Vapor Condensate

 ie
 Immature erythrocytes

 mie
 Number of micronucleated cells observed per 2000 immature erythrocytes examined

 me
 Mature erythrocytes

 mme
 Number of micronucleated cells observed and calculated per 2000 mature erythrocytes

 SD
 Standard deviation

Results of statistical analysis using the appropriate nonparametric method of analysis based on permutation (one-sided probabilities):

| <b>**</b> P < 0.01   | (Significant - Permutation or Wilcoxon test) |
|----------------------|----------------------------------------------|
| otherwise $P > 0.01$ | (not significant)                            |

<sup>†</sup> Occasional apparent errors of  $\pm$  1% may occur due to rounding of values for presentation in the table

<sup>a</sup> Formula for calculation of incidence mme (group mean):

Sum of group incidence **mme** scored x 2000 Sum of group **me** scored

| Treatment        | Exposure level  | Animal | ie  | me  | Proportion of | Incidence                       | Incidence |
|------------------|-----------------|--------|-----|-----|---------------|---------------------------------|-----------|
|                  | $(mg/m^3)$      | number |     |     | ie            | mie                             | mme       |
| Negative control | -               | M 1081 | 548 | 472 | 54            | 2                               | 0         |
|                  |                 | M 1082 | 479 | 526 | 48            | $\frac{-}{3}$                   | Ő         |
|                  |                 | M 1082 | 534 | 523 | 51            | 3<br>2<br>1                     | Ő         |
|                  |                 | M 1084 | 509 | 503 | 50            | 1                               | Ő         |
|                  |                 | M 1085 | 494 | 563 | 47            | 3                               | 0         |
|                  |                 | F 1591 | 527 | 514 | 51            | 0                               | 1         |
|                  |                 | F 1592 | 565 | 501 | 53            | 3                               | 0         |
|                  |                 | F 1593 | 453 | 589 | 43            | 1                               | 0         |
|                  |                 | F 1594 | 548 | 484 | 53            | 2                               | 0         |
|                  |                 | F 1595 | 464 | 576 | 45            | 1                               | 0         |
| TS               | 2000            | M 2071 | 532 | 471 | 53            | 2                               | 0         |
|                  |                 | M 2072 | 527 | 549 | 49            | 1                               | 0         |
|                  |                 | M 2073 | 584 | 483 | 55            | 2                               | 0         |
|                  |                 | M 2074 | 545 | 555 | 50            | 1                               | 0         |
|                  |                 | M 2075 | 504 | 513 | 50            | 0                               | 1         |
|                  |                 | F 2581 | 481 | 540 | 47            | 33                              | 0         |
|                  |                 | F 2582 | 481 | 539 | 47            |                                 | 0         |
|                  |                 | F 2583 | 445 | 596 | 43            | 6                               | 1         |
|                  |                 | F 2584 | 406 | 679 | 37            | 1                               | 0         |
|                  |                 | F 2585 | 458 | 555 | 45            | 3                               | 1         |
| TS               | 10000           | M 3071 | 508 | 495 | 51            | 1                               | 0         |
|                  |                 | M 3072 | 558 | 447 | 56            | 4                               | 0         |
|                  |                 | M 3073 | 543 | 473 | 53            | 4<br>2<br>3<br>2<br>3<br>2<br>4 | 0         |
|                  |                 | M 3074 | 540 | 493 | 52            | 3                               | 0         |
|                  |                 | M 3075 | 474 | 603 | 44            | 2                               | 0         |
|                  |                 | F 3581 | 494 | 532 | 48            | 3                               | 0         |
|                  |                 | F 3582 | 551 | 513 | 52            | 2                               | 0         |
|                  |                 | F 3583 | 530 | 763 | 41            |                                 | 0         |
|                  |                 | F 3584 | 492 | 545 | 47            | 1                               | 0         |
|                  |                 | F 3585 | 526 | 510 | 51            | 6                               | 0         |
| TS               | 20000           | M 4081 | 574 | 506 | 53            | 1                               | 0         |
|                  |                 | M 4082 | 547 | 465 | 54            | 7                               | 0         |
|                  |                 | M 4083 | 479 | 612 | 44            | 2<br>3                          | 0         |
|                  |                 | M 4084 | 376 | 629 | 37            |                                 | 0         |
|                  |                 | M 4085 | 555 | 476 | 54            | 1                               | 0         |
|                  |                 | F 4591 | 409 | 604 | 40            | 2<br>2                          | 1         |
|                  |                 | F 4592 | 402 | 657 | 38            |                                 | 0         |
|                  |                 | F 4593 | 537 | 482 | 53            | 4                               | 0         |
|                  |                 | F 4594 | 524 | 504 | 51            | 3                               | 0         |
| TS               | Gasoline FTBF V | F 4595 | 514 | 500 | 51            | 2                               | 0         |

 Table 4
 Slide set 2 - Results for individual animals

TS Gasoline ETBE Vapor Condensate

ie Immature erythrocytes

me

mie Number of micronucleated cells observed per 2000 immature erythrocytes

Total number of mature erythrocytes examined for micronuclei

mme Number of micronucleated mature erythrocytes observed

| Treatment        | Dosage   | Animal<br>number | ie  | me  | Proportion of ie | Incidence<br>mie | Incidence<br>mme |
|------------------|----------|------------------|-----|-----|------------------|------------------|------------------|
| Cyclophosphamide | 40 mg/kg | M 6051           | 340 | 810 | 30               | 21               | 2                |
|                  |          | M 6052           | 407 | 659 | 38               | 45               | 1                |
|                  |          | M 6053           | 348 | 868 | 29               | 35               | 0                |
|                  |          | M 6054           | 357 | 764 | 32               | 31               | 0                |
|                  |          | M 6055           | 340 | 790 | 30               | 18               | 0                |
|                  |          | F 6561           | 259 | 795 | 25               | 17               | 1                |
|                  |          | F 6562           | 263 | 807 | 25               | 13               | 0                |
|                  |          | F 6563           | 341 | 669 | 34               | 20               | 0                |
|                  |          | F 6564           | 393 | 624 | 39               | 13               | 0                |
|                  |          | F 6565           | 271 | 759 | 26               | 25               | 1                |

Table 4 - Slide set 2 - Results for individual animals - continued

ie Immature erythrocytes mie Number of micronuclea

Number of micronucleated cells observed per 2000 immature erythrocytes

Total number of mature erythrocytes examined for micronuclei

me mme

Number of micronucleated mature erythrocytes observed

| Table 5 | Combined summary of results and statistical analysis – Slide sets 1 and 2 |
|---------|---------------------------------------------------------------------------|
|         | (males and females)                                                       |

| Sampling time<br>after | Treatment        | Exposure level (mg/m <sup>3</sup> ) | Proportion of<br>ie † | Incidence mie      | Incidence mme       |
|------------------------|------------------|-------------------------------------|-----------------------|--------------------|---------------------|
| last exposure          |                  |                                     | $(Mean \pm SD)$       | $(Mean \pm SD)$    | $(Mean \pm SD)^{a}$ |
| 24 Hours               | Negative control | -                                   | $47\pm4.2$            | $1.5 \pm 1.1$      | $0.2 \pm 0.2$       |
|                        | TS               | 2000                                | $47\pm3.9$            | $1.5 \pm 1.4$      | $0.5\pm0.4$         |
|                        | TS               | 10000                               | $47\pm4.5$            | $2.8 \pm 1.6$ **   | $0.0\pm0.0$         |
|                        | TS               | 20000                               | $46 \pm 5.2$          | $2.6 \pm 1.6^{**}$ | $0.2\pm0.2$         |
|                        | Cyclophosphamide | 40 mg/kg                            | $34 \pm 5.4$ ***      | $23.3 \pm 8.6$ *** | $1.0 \pm 0.6$       |

| Gasoline ETBE Vapor Condensate                                                      |
|-------------------------------------------------------------------------------------|
| Immature erythrocytes                                                               |
| Number of micronucleated cells observed per 2000 immature erythrocytes examined     |
| Mature erythrocytes                                                                 |
| Number of micronucleated cells observed and calculated per 2000 mature erythrocytes |
| Standard deviation                                                                  |
|                                                                                     |

Results of statistical analysis using the appropriate nonparametric method of analysis based on permutation (one-sided probabilities):

| ***       | P < 0.001 | (Highly significant - Permutation or Wilcoxon test)                                                    |
|-----------|-----------|--------------------------------------------------------------------------------------------------------|
| **        | P<0.01    | (Significant for Linear by Linear trend test when<br>Groups 1 to 4 included and with Group 4 excluded. |
| otherwise | P > 0.01  | (Not significant)                                                                                      |

<sup>†</sup> Occasional apparent errors of  $\pm$  1% may occur due to rounding of values for presentation in the table

<sup>a</sup> Formula for calculation of incidence **mme** (group mean):

Sum of group incidence **mme** scored x 2000 Sum of group **me** scored

| Sampling      | Treatment        | Exposure level | Proportion of     | Incidence mie                         | Incidence mme       |
|---------------|------------------|----------------|-------------------|---------------------------------------|---------------------|
| time after    |                  | $(mg/m^3)$     | ie †              | $(\mathbf{M} + \mathbf{C}\mathbf{D})$ |                     |
| last exposure |                  |                | $(Mean \pm SD)$   | $(Mean \pm SD)$                       | $(Mean \pm SD)^{a}$ |
|               |                  | MA             | LES               |                                       |                     |
|               |                  |                |                   |                                       |                     |
| 24 hours      | Negative control | -              | $47 \pm 3.6$      | $1.9 \pm 0.9$                         | $0.0 \pm 0.0$       |
|               | TS               | 2000           | $49 \pm 3.4$      | $0.9\pm0.7$                           | $0.4 \pm 0.3$       |
|               | TS               | 10000          | $48 \pm 5.2$      | $2.0 \pm 1.5$                         | $0.0 \pm 0.0$       |
|               | TS               | 20000          | $47 \pm 5.4$      | $2.8 \pm 1.8$                         | $0.0 \pm 0.0$       |
|               | Cyclophosphamide | 40 (mg/kg)     | $34 \pm 3.8^{**}$ | $27.9 \pm 8.2$ **                     | $1.4 \pm 0.7$       |
|               |                  | FEM            | ALES              |                                       |                     |
| 24 hours      | Negative control | -              | $47 \pm 4.9$      | $1.1 \pm 1.1$                         | $0.4 \pm 0.3$       |
|               | TS               | 2000           | $45 \pm 3.4$      | $2.1 \pm 1.7$                         | $0.7 \pm 0.4$       |
|               | TS               | 10000          | $46 \pm 3.8$      | $3.5 \pm 1.4$ **                      | $0.0 \pm 0.0$       |
|               | TS               | 20000          | $45 \pm 5.1$      | $2.3 \pm 1.5$                         | $0.3 \pm 0.3$       |
|               | Cyclophosphamide | 40 (mg/kg)     | $34 \pm 6.7$ **   | $18.6 \pm 6.4 **$                     | $0.6 \pm 0.4$       |

| Table 5 - Combined summary of results and statistical analysis –Slide sets 1 and 2 |  |  |
|------------------------------------------------------------------------------------|--|--|
| (separate sexes) - continued                                                       |  |  |

| TS | Gasoline ETBE Vapor Condensate |
|----|--------------------------------|
| ie | Immature erythrocytes          |

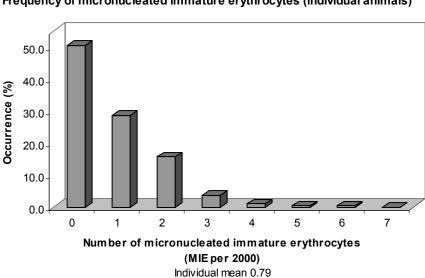
10

Number of micronucleated cells observed per 2000 immature erythrocytes examined mie

Mature erythrocytes me

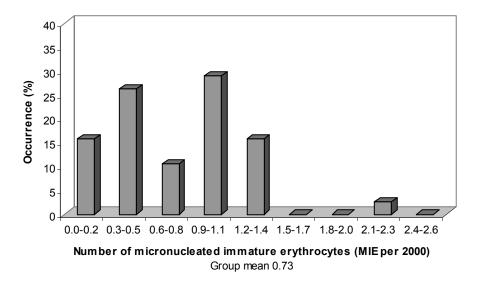
Number of micronucleated cells observed and calculated per 2000 mature erythrocytes mme Standard deviation SD

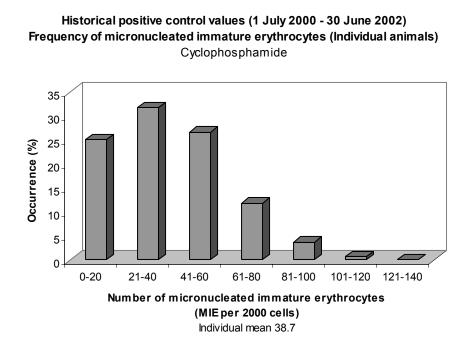
Results of statistical analysis using the appropriate nonparametric method of analysis based on permutation (one-sided probabilities):


> \*\* P < 0.01 (Significant - Permutation test or Wilcoxon test) otherwise P > 0.01(not significant)

<sup>†</sup> Occasional apparent errors of  $\pm$  1% may occur due to rounding of values for presentation in the table

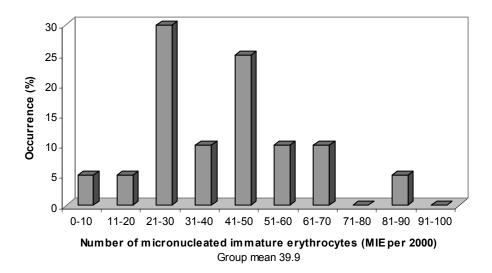
<sup>a</sup> Formula for calculation of incidence mme (group mean):


Sum of group incidence mme scored x 2000 Sum of group **me** scored


## Appendix 1 Historical control values



Historical negative control values (1 July 2000 - 30 June 2002) Frequency of micronucleated immature erythrocytes (individual animals)


Historical negative control values (1 July 2000 - 30 June 2002) Frequency of micronucleated immature erythrocytes (Group mean values)





**Appendix 1 – continued** 

Historical positive control values (1 July 2000 - 30 June 2002) Frequency of micronucleated immature erythrocytes (Group mean values) Cyclophosphamide



# Appendix 2 Animal exposure and observations data

Huntingdon Life Sciences

00-6129 211-ETBE-S Page 1044 Final Report

| Animal Exposure and Animal Data |            |
|---------------------------------|------------|
| Preface                         | Appendix 2 |

**INTRODUCTION:** The following is data generated at Huntingdon Life Sciences, East Millstone, NJ. The separately issued main study report should be referenced for details of the procedures used for test atmosphere generation/characterization and animal evaluations.

| STUDY DATES: | Date of Animal Receipt:       | 12 November 2001           |
|--------------|-------------------------------|----------------------------|
| • • • •      | Experimental Initiation Date: | 23 November 2001 (in-life) |
|              | Experimental Completion Date: | 20 December 2001 (in-life) |
|              | Draft Report Date:            | 19 June 2002               |

**EXPOSURES AND IN-LIFE SUMMARY:** The actual measured results during the exposures were comparable to the targeted exposure levels. There were no exposure-related effects seen in the test animals with regards to body weights and feed consumption.

# **TABLE OF CONTENTS**

# TABLES

| Chamber Monitoring Results                             | 1045                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of Clinical Observations (pretest only)        |                                                                                                                                                                                                                                                                                                        |
| Mean Body Weights (grams)                              | 1055                                                                                                                                                                                                                                                                                                   |
| Mean Body Weight Change (grams)                        | 1057                                                                                                                                                                                                                                                                                                   |
| Mean Feed Consumption Values (grams/kg/day)            | 1059                                                                                                                                                                                                                                                                                                   |
| Individual Weekly Clinical Observations (pretest only) | 1061                                                                                                                                                                                                                                                                                                   |
| Individual Body Weights (grams)                        | 1071                                                                                                                                                                                                                                                                                                   |
| Individual Body Weight Change (grams)                  |                                                                                                                                                                                                                                                                                                        |
| Individual Feed Consumption Values (grams/kg/day)      | 1091                                                                                                                                                                                                                                                                                                   |
| Animal Termination History                             | 1101                                                                                                                                                                                                                                                                                                   |
|                                                        | Mean Body Weights (grams)<br>Mean Body Weight Change (grams)<br>Mean Feed Consumption Values (grams/kg/day)<br>Individual Weekly Clinical Observations (pretest only)<br>Individual Body Weights (grams)<br>Individual Body Weight Change (grams)<br>Individual Feed Consumption Values (grams/kg/day) |

|                 |           |          |                      |                      |           | hamber Mor<br>umulative | 2                 |          |        |           |                      |             |           |
|-----------------|-----------|----------|----------------------|----------------------|-----------|-------------------------|-------------------|----------|--------|-----------|----------------------|-------------|-----------|
|                 |           |          |                      |                      |           | oup IA - 0              | -                 |          | 3      |           |                      |             |           |
|                 |           | [        |                      |                      |           |                         | (urr on           | Ly, mg/m |        |           |                      | Chamber En  | vironment |
|                 |           |          |                      |                      |           |                         |                   |          | P      | article : | Size                 | Mea         | in        |
| Day             | Date      | Exposure | Nominal              | Ana                  | lytical ( | Chamber Con             | ncentrati         | on       | De     | terminat  | ions                 | Temperature | Humidity  |
|                 |           | Number   |                      | Mean                 |           | Indivi                  | idual             |          | MMAD   | GSD       | TMC                  |             |           |
|                 |           |          | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |           | (mg/                    | 'm <sup>3</sup> ) |          | (µm)   |           | (mg/m <sup>3</sup> ) | (°C)        | (%)       |
| 31              | 23-Nov-01 | 1        | 0                    | 0                    | 0         | 0                       | 0 .               | 0        |        |           |                      | 25          | 52        |
| 32              | 24-Nov-01 | 2        | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 25          | 53        |
| 34              | 26-Nov-01 | 3        | 0                    | 0                    | Ģ         | 0                       | 0                 | 0        |        |           |                      | 25          | 48        |
| 35              | 27-Nov-01 | 4        | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 24          | 49        |
| 36              | 28-Nov-01 | 5        | 0                    | 0                    | 0         | 0                       | 0                 | . 0      |        |           |                      | 24          | 50        |
| 37              | 29-Nov-01 | 6        | 0                    | 0                    | 0         | 0                       | 0                 | 0        | 1.046  | 1.964     | 1.94E-03             | 24          | 50        |
| 38              | 30-Nov-01 | 7        | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 24          | 56        |
| 41              | 3-Dec-01  | 8        | 0                    | 0                    | 0         | 0                       | · 0               | 0        |        |           |                      | 24          | 50        |
| 42              | 4-Dec-01  | 9        | 0                    | о                    | 0         | 0                       | 0                 | 0        |        |           |                      | 24          | 51        |
| 43              | 5-Dec-01  | 10       | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 25          | 51        |
| 44              | 6-Dec-01  | 11       | 0                    | 0                    | 0         | 0                       | Ö                 | 0        | 0.9233 | 1.647     | 2.32E-03             | 25          | 52        |
| 45              | 7-Dec-01  | 12       | 0                    | 0                    | 0         | . 0                     | 0                 | 0        | 1      |           |                      | 25          | 50        |
| 48              | 10-Dec-01 | 13       | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 25          | 50        |
| 49              | 11-Dec-01 | 14       | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 23          | 54        |
| 50              | 12-Dec-01 | 15       | 0                    | 0.                   | 0         | 0                       | 0                 | 0        |        |           |                      | 24          | 52        |
| 51              | 13-Dec-01 | 16       | 0                    | 0                    | 0         | 0                       | 0                 | 0        | 0.7808 | 1.691     | 2.30E-03             | 24          | 50        |
| 52 <sup>.</sup> | 14-Dec-01 | 17       | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 24          | 51        |
| 55              | 17-Dec-01 | 18       | 0                    | 0                    | 0         | 0                       | 0                 | 0        |        |           |                      | 24          | 51        |
| 56              | 18-Dec-01 | 19       | 0                    | 0                    | 0         | o                       | 0                 | 0        |        |           |                      | 25          | 53        |
| 57              | 19-Dec-01 | 20       | 0                    | 0                    | 0         | 0                       | 0                 | 0        | L      | ļ         |                      | 25          | 52        |
|                 |           | Mean     | 0                    |                      |           | 0                       |                   |          | 0.9167 | 1.767     | 2.19E-03             | 24.4        | 51.3      |
|                 |           | •        | •                    | 1                    | 1         |                         |                   |          | 1      | 1         |                      | 1           |           |

0

0.133

0.172

2.14E-04

Table A

S.D.

0

0.6

1.8

| ·               |           |          |                      |                      |           | hamber Mon<br>umulative | -                |          |        |           |                      | •               |           |
|-----------------|-----------|----------|----------------------|----------------------|-----------|-------------------------|------------------|----------|--------|-----------|----------------------|-----------------|-----------|
|                 |           |          |                      |                      |           | oup IB - 0              | -                |          |        |           |                      |                 |           |
| ·               |           |          |                      |                      | GI        | опћ тв - о              | (arr on-         | rð) mð)m | 1      |           |                      | Chamber Er      | vironment |
|                 |           |          |                      |                      |           |                         |                  |          | P      | article   | Size                 | Mea             |           |
| Day             | Date      | Exposure | Nominal              | Anal                 | Lytical ( | hamber Con              | ncentrati        | on       | D      | eterminat | cions                | Temperature     | Humidity  |
|                 |           | Number   |                      | Mean                 |           | Indivi                  |                  |          | MMAD   | GSD       | TMC                  |                 |           |
|                 |           |          | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) | · · · · · | (mg/                    | m <sup>3</sup> ) |          | (µm)   |           | (mg/m <sup>3</sup> ) | (°C)            | (%)       |
| 31              | 23-Nov-01 | 1        | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 54        |
| 32              | 24-Nov-01 | 2        | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 55        |
| 34              | 26-Nov-01 | 3        | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 50        |
| 35              | 27-Nov-01 | 4        | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 51        |
| 36              | 28-Nov-01 | 5        | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 52        |
| 37              | 29-Nov-01 | 6        | 0                    | 0                    | 0         | 0                       | 0                | 0        | 1.811  | 2.481     | 4.57E-03             | 24              | 52        |
| 38              | 30-Nov-01 | 7        | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 57        |
| 41              | 3-Dec-01  | 8        | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 25              | 51        |
| 42              | 4-Dec-01  | . 9      | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 53        |
| 43 <sup>.</sup> | 5-Dec-01  | 10       | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 54        |
| 44              | 6-Dec-01  | . 11     | 0                    | 0                    | 0         | 0                       | 0                | 0        | 6.742  | 3,378     | 9.03E-03             | 24              | 54        |
| 45              | 7-Dec-01  | 12       | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 52        |
| 48              | 10-Dec-01 | 13       | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 52        |
| 49              | 11-Dec-01 | 14       | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 54        |
| 50              | 12-Dec-01 | 15       | O                    | 0                    | 0         | 0                       | . 0 .            | 0        |        |           |                      | 24              | 53        |
| 51              | 13-Dec-01 | 16       | 0                    | 0,                   | 0         | 0                       | 0                | 0        | 0.7426 | 1.477     | 1.85E-03             | 24              | 50        |
| 52              | 14-Dec-01 | 17       | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 52        |
| 55              | 17-Dec-01 | 18       | 0                    | 0                    | 0         | 0                       | 0                | o        |        |           |                      | 25 <sup>.</sup> | 51        |
| 56              | 18-Dec-01 | 19       | 0                    | 0                    | 0         | 0                       | 0                | 0        |        |           |                      | 24              | 52        |
| 57              | 19-Dec-01 | 20       | 0                    | 0                    | 0         | . 0                     | 0.               | 0        |        |           |                      | 24              | 55        |
|                 |           | Mean     | 0                    |                      |           | 0                       |                  |          | 3.099  | 2.445     | 5.15E-03             | 24.1            | 52.7      |
|                 |           | S.D.     | 0                    |                      |           | 0                       |                  |          | 3.200  | 0.951     | 3.62E-03             | 0.3             | 1.8       |

Table A

.

Page 1046

|     |           |          |                      |                              |           | Chamber Mo<br>Cumulative | -         |                   |              |            |                                       |             |           |
|-----|-----------|----------|----------------------|------------------------------|-----------|--------------------------|-----------|-------------------|--------------|------------|---------------------------------------|-------------|-----------|
|     |           |          |                      |                              |           | Group II                 | A - 2,000 | mg/m <sup>3</sup> |              |            |                                       |             |           |
|     | · · · ·   |          |                      |                              |           |                          |           |                   |              |            |                                       | Chamber En  | vironment |
|     |           |          |                      |                              |           |                          |           |                   |              | Particle S |                                       | Mea         |           |
| Day | Date      | Exposure | Nominal              |                              | lytical ( | Chamber Con              |           | .on               |              | eterminat. | · · · · · · · · · · · · · · · · · · · | Temperature | Humidity  |
|     |           | Number   | (mg/m <sup>3</sup> ) | Mean<br>(mg/m <sup>3</sup> ) |           | Indivi<br>(mg/           |           |                   | MMAD<br>(µm) | GSD        | TMC<br>(mg/m <sup>3</sup> )           | (°C)        | (%)       |
| 31  | 23-Nov-01 | 1        | 2270                 | 2000                         | 1910      | 2100                     | 1840      | 2150              |              |            |                                       | 24          | 49        |
| 32  | 24-Nov-01 | 2        | 2210                 | 2035                         | 2210      | 2090                     | 1940      | 1900              |              |            |                                       | 24          | 49        |
| 34  | 26-Nov-01 | 3        | 2260                 | 1990                         | 1910      | 1990                     | 2000      | 2060              |              |            |                                       | 24          | 45        |
| 35  | 27-Nov-01 | 4        | 2250                 | 2045                         | 2090      | 1840                     | 2300      | 1950              |              |            |                                       | 23          | 48        |
| 36  | 28-Nov-01 | 5        | 2240                 | 2028                         | 2310      | 2130                     | 1940      | 1730              |              |            |                                       | 23          | 47        |
| 37  | 29-Nov-01 | 6        | 2150                 | 2000                         | 1890      | 1880                     | 1980      | 2250              | 1.042        | 1.662      | 1.94E-03                              | 23          | 48        |
| 38  | 30-Nov-01 | 7        | 2240                 | 1975                         | 2030 -    | 2080                     | 1700      | 2090              |              |            |                                       | 23          | 54        |
| 41  | 3-Dec-01  | 8        | 2160                 | 2013                         | 2000      | 2110                     | 1960      | 1980              |              |            |                                       | 23          | 48        |
| 42  | 4-Dec-01  | 9        | 2160                 | 2000                         | 2050      | 2030                     | 1920      | 2000              |              |            |                                       | 24          | 47        |
| 43  | 5-Dec-01  | 10       | 2070                 | 2145                         | 2340      | 2260                     | 2070      | 1910              |              |            |                                       | 24          | 48        |
| 44  | 6-Dec-01  | 11       | 2220                 | 1923                         | 2060      | 1980                     | 1810      | 1840              | 0.9014       | 1.876      | 2.75E-03                              | 24          | 48        |
| 45  | 7-Dec-01  | 12       | 2080                 | 1968                         | 2080      | 2040                     | 1680      | 2070              |              |            |                                       | 24          | 47        |
| 48  | 10-Dec-01 | 13       | 1890                 | 2015                         | 2580      | 1420                     | 1950      | 2110              |              |            |                                       | 24          | 47        |
| 49  | 11-Dec-01 | 14       | 2060                 | 2003                         | 1960      | 1510                     | 2400      | 1410              |              |            |                                       | 23          | 49        |
| 50  | 12-Dec-01 | 15       | 2360                 | 2220                         | 2380      | 2000                     | 2480      | 2020              |              |            |                                       | 23          | 49        |
| 51  | 13-Dec-01 | 16       | 2260                 | 2155                         | 2030      | 2400                     | 2250      | 1940              | 0.9658       | 2.407      | 2.51E-03                              | 23          | 47        |
| 52  | 14-Dec-01 | 17       | 2220                 | 2130                         | 2350      | 2050                     | 2040 ·    | 2080              |              |            |                                       | . 23        | 48        |
| 55  | 17-Dec-01 | 18       | 2130                 | 2050                         | 2350      | 1840                     | 1920      | 2090              |              |            |                                       | 24          | 48        |
| 56  | 18-Dec-01 | 19       | 2160                 | 2130                         | 1960      | 2120                     | 2270      | 2170              |              |            |                                       | 24          | 47        |
| 57  | 19-Dec-01 | 20       | 2180                 | 2063                         | 2220      | 2080                     | 1890      | 2060              |              |            |                                       | 24          | 49        |
|     | · ·       | Mean     | 2179                 |                              |           | 2035                     |           |                   | 0.9697       | 1.982      | 2.40E-03                              | 23.6        | 48.1      |
|     |           |          |                      |                              |           |                          |           |                   |              |            |                                       |             |           |

210

101

s.D.

0.070

0.384

4.16E-04

00-6129

Page 1047

0.5

1.7

.

Table A

|     | -         |          | <u> </u>             |                                       |            | Chamber Mc  | -         |                     |               |           |            |                            |          |  |
|-----|-----------|----------|----------------------|---------------------------------------|------------|-------------|-----------|---------------------|---------------|-----------|------------|----------------------------|----------|--|
|     |           |          |                      |                                       |            | Cumulative  | -         |                     |               |           |            |                            |          |  |
|     |           |          | r                    | · · · · · · · · · · · · · · · · · · · |            | Group II    | B - 2,000 | ) mg/m <sup>*</sup> |               |           |            |                            |          |  |
|     |           |          |                      |                                       |            |             |           |                     | Particle Size |           |            | Chamber Environmen<br>Mean |          |  |
| Day | Date      | Exposure | Nominal              | Δna                                   | lytical (  | Chamber Con | centrati  | 07                  | -             | eterminat |            | Temperature                | Humidity |  |
| Day | Date      | Number   |                      | Mean                                  | Ly CLOUL ( | Indivi      |           |                     | MMAD          | GSD       | TMC        |                            |          |  |
| · . |           |          | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> )                  |            | (mg/        |           |                     | (µm)          |           | $(mg/m^3)$ | (°C)                       | (%)      |  |
| 31  | 23-Nov-01 | 1        | 2270                 | 2103                                  | 2150       | 2100        | 2110      | 2050                |               |           |            | 23                         | 51       |  |
| 32  | 24-Nov-01 | 2        | 2210                 | 1988                                  | 1850       | 1840        | 2090      | 2170                | ~             |           |            | 23                         | 51       |  |
| 34  | 26-Nov-01 | 3.       | 2260                 | 2068                                  | 2120       | 1870        | 2170      | 2110                |               |           |            | 23                         | 47       |  |
| 35  | 27-Nov-01 | 4        | 2250                 | 1938                                  | 1610       | 2070        | 2090      | 1980                |               |           |            | 23                         | 48       |  |
| 36  | 28-Nov-01 | 5        | 2240                 | 2108                                  | 1870       | 2080        | 2260      | 2220                |               |           |            | 23                         | 48       |  |
| 37  | 29-Nov-01 | 6        | 2150                 | 1973                                  | 2030       | 1870        | 2110      | 1880                | 1.046         | 1.589     | 1.83E-03   | 23                         | 50       |  |
| 38  | 30-Nov-01 | 7        | 2240.                | 2120                                  | 1840       | 1760        | 2340      | 2540                |               |           |            | 23                         | 54       |  |
| 41  | 3-Dec-01  | . 8      | 2160                 | 2008                                  | 2240       | 1810        | 2030      | 1950                |               |           |            | 23                         | 48       |  |
| 42  | 4-Dec-01  | . 9      | 2160                 | 2110                                  | 2210       | 2010        | 2250      | 1970                |               |           |            | 23                         | 50       |  |
| 43  | 5-Dec-01  | 10       | 2070                 | 2110                                  | 2150       | 2020        | 2100      | 2170                |               |           |            | 23                         | 50       |  |
| 44  | 6-Dec-01  | 11       | 2220                 | 1995                                  | 2120       | 2060        | 1980      | 1820                | 0.8575        | 1.532     | 2.71E-03   | 23                         | 52       |  |
| 45  | 7-Dec-01  | 12       | 2080                 | 2238                                  | 2290       | 2350        | 1670      | 2640                |               |           |            | 23                         | 49       |  |
| 48  | 10-Dec-01 | 13       | 1890                 | 2228                                  | 2770       | 1830        | 2350      | 1960                |               |           |            | 23                         | 49       |  |
| 49  | 11-Dec-01 | 14       | 2060                 | 2063                                  | 2350       | 1980        | 2350      | 1570                |               |           |            | 23                         | 50       |  |
| 50  | 12-Dec-01 | 15       | 2360                 | 2378                                  | 2770       | 2570        | 2100      | 2070                |               | -         |            | 23                         | 50       |  |
| 51  | 13-Dec-01 | 16       | 2260                 | 2120                                  | 2400       | 1880        | 2220      | 1980                | 3.402         | 3.001     | 5.81E-03   | 23                         | 48       |  |
| 52  | 14-Dec-01 | 17       | 2220                 | 2040                                  | 1890       | 1870        | 2100      | 2300                |               |           |            | _ 23                       | 49       |  |
| 55  | 17-Dec-01 | 18       | 2130                 | 2115                                  | 2300       | 2010        | 2230      | 1920                |               |           |            | 24                         | 49       |  |
| 56  | 18-Dec-01 | 19       | 2160                 | 1963                                  | 2030       | 1840        | 1960      | 2020                |               |           |            | 23                         | 51       |  |
| 57  | 19-Dec-01 | 20       | 2180                 | 1993                                  | 2100       | 1860        | 1880      | 2130                |               |           |            | 23                         | 51       |  |
|     |           | Mean     | 2179                 |                                       |            | 2083        |           |                     | 1.769         | 2.041     | 3.45E-03   | 23.1                       | 49.8     |  |
|     |           |          |                      | 1                                     | I I        |             |           |                     | 1             | I         |            |                            |          |  |

232

1.418 0.832 2.09E-03

0.2

1.7

Table A

S.D.

101

.....

00-6129

Page 1048

Page 1049

Table A

# GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS

|     |           |          |                      |                              |           | Chamber M<br>Cumulativ |           |                      |              |           |                             |             |            |
|-----|-----------|----------|----------------------|------------------------------|-----------|------------------------|-----------|----------------------|--------------|-----------|-----------------------------|-------------|------------|
|     |           | · .      |                      |                              |           | Group II               | IA - 10,0 | 00 mg/m <sup>3</sup> |              |           |                             |             |            |
|     |           |          |                      |                              |           |                        |           |                      |              |           |                             | Chamber E   | nvironment |
| ,   | ·<br>·    |          |                      |                              |           |                        |           |                      |              | article S |                             | Me          |            |
| Day | Date      | Exposure | Nominal              |                              | lytical ( | Chamber Con            |           | on                   |              | terminat  |                             | Temperature | Humidity   |
|     |           | Number   | (mg/m <sup>3</sup> ) | Mean<br>(mg/m <sup>3</sup> ) |           | Indiv:<br>(mg/         |           |                      | MMAD<br>(سر) | GSD       | TMC<br>(mg/m <sup>3</sup> ) | (°C)        | े<br>(१)   |
| 31  | 23-Nov-01 | 1        | 11200                | 10040                        | 9790      | 10700                  | 9460      | 10200                |              |           |                             | 24          | 48         |
| 32  | 24-Nov-01 | 2        | 10700                | 9300                         | 10500     | 9360                   | 8540      | 8800                 |              |           |                             | 24          | 50         |
| 34  | 26-Nov-01 | 3        | 10700                | 9005                         | 8520      | 10500                  | 9130      | 7870                 |              |           |                             | 24          | 46         |
| 35  | 27-Nov-01 | 4        | 10700                | 10420                        | 9060      | 10500                  | 11800     | 10300                |              |           |                             | 23          | 48         |
| 36  | 28-Nov-01 | 5        | 10600                | 10180                        | 10300     | 10800                  | 9890      | 9720                 |              |           |                             | 23          | 48         |
| 37  | 29-Nov-01 | 6.       | 11200                | 10250                        | 9890      | 10500                  | 10500     | 10100                | 1.460        | 2.555     | 3.01E-03                    | 23          | 49         |
| 38  | 30-Nov-01 | 7        | 10400                | 9750                         | 9090      | 9490                   | 10800     | 9620                 |              |           |                             | 23          | 54         |
| 41  | 3-Dec-01  | 8        | 10400                | 9613                         | 10300     | 8460                   | 10200     | 9490                 |              |           |                             | 23          | 47         |
| 42  | 4-Dec-01  | 9        | 11200                | 10500                        | `10500    | 10500                  | 10500     | 10500                |              |           |                             | 24          | 48         |
| 43  | 5-Dec-01  | 10       | 10700                | 10200                        | 10500     | 9790                   | 10000     | 10500                |              |           |                             | 24          | 49         |
| 44  | 6-Dec-01  | . 11     | 10500                | 9453                         | 9460      | 8800                   | 9790      | 9760                 | 0.9809       | 1.829     | 2.97E-03                    | 24          | 48         |
| 45  | 7-Dec-01  | 12       | 11100                | 10350                        | 10400     | 10500                  | 10400     | 10100                |              |           |                             | 24          | 47         |
| 48  | 10-Dec-01 | 13 ·     | 10400                | 10120                        | 10100     | 10100                  | 10500     | 9790                 |              |           |                             | 24          | 46         |
| 49  | 11-Dec-01 | 14       | 11200                | 10120                        | 10100     | 10900                  | 9390      | 10100                |              |           |                             | 23          | 48         |
| 50  | 12-Dec-01 | 15       | 10200                | 9590                         | 8540      | 9790                   | 9230      | 10800                |              |           |                             | 23          | 50         |
| 51  | 13-Dec-01 | 16       | 10800                | 10430                        | 11900     | 11500                  | . 8770    | 9560                 | 0.9910       | 2.266     | 3.35E-03                    | 23          | 48         |
| 52  | 14-Dec-01 | 17       | 11000                | 10500                        | 10100     | 10100                  | 11000     | 10800                |              |           | •                           | 23          | 50         |
| 55  | 17-Dec-01 | 18 .     | 、11000 <sub>.</sub>  | 10450                        | 10800     | 10100                  | 10800     | 10100                |              |           |                             | 23          | 48         |
| 56  | 18-Dec-01 | 19       | 10600                | 9915                         | 10000     | 9360                   | 10100     | 10200                |              |           |                             | 24          | 48         |
| 57  | 19-Dec-01 | - 20     | 10300                | 10450                        | 10400     | 10800                  | 10500     | 10100                |              |           |                             | 24          | 49         |
|     |           | Mean     | 10745                |                              |           | 10031                  |           |                      | 1,144        | 2.217     | 3.11E-03                    | 23.5        | 48.5       |
|     |           | s.D.     | 328                  |                              |           | 747                    |           |                      | 0.274        | 0.366     | 2.09E-04                    | 0.5         | 1.7        |

Page 1050

## Table A

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS

| · · · · · · · · · · · · · · · · · · · |                                                           |          |                      |                      |           |                          |                  |       |        |           |                      |             |           |
|---------------------------------------|-----------------------------------------------------------|----------|----------------------|----------------------|-----------|--------------------------|------------------|-------|--------|-----------|----------------------|-------------|-----------|
|                                       | ана на на<br>Прила на |          |                      |                      |           | Chamber Mo<br>Cumulative | 2                |       |        |           |                      |             |           |
|                                       |                                                           |          |                      |                      |           | Group III                | -                | _     |        |           |                      |             |           |
|                                       |                                                           | <b> </b> |                      |                      | ,,        | under present            |                  |       |        |           |                      | Chamber Er  | vironment |
|                                       |                                                           |          |                      |                      |           |                          |                  |       | F      | article S | ize                  | Mea         | n         |
| Day                                   | Date                                                      | Exposure | Nominal              | Ana                  | lytical C | hamber Co                | ncentrati        | on    | D      | eterminat | ons                  | Temperature | Humidity  |
|                                       |                                                           | Number   |                      | Mean                 |           | Indiv                    |                  |       | MMAD   | GSD       | TMC                  |             |           |
|                                       |                                                           |          | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |           | (mg/                     | m <sup>3</sup> ) |       | (µm)   |           | (mg/m <sup>3</sup> ) | (°C)        | (%)       |
| 31                                    | 23-Nov-01                                                 | 1        | 112,00               | 10230                | 10100     | 11100                    | 9620             | 10100 |        |           |                      | 23          | 46        |
| 32                                    | 24-Nov-01                                                 | 2        | 10700                | 10410                | 8930      | 10500                    | 10800            | 11400 |        |           |                      | 23          | 48        |
| 34                                    | 26-Nov-01                                                 | 3        | . 10700              | 9455                 | 7670      | 9790                     | 9860             | 10500 |        |           |                      | 23          | 45        |
| 35                                    | 27-Nov-01                                                 | 4        | 10700                | 9840                 | 10300     | 9330                     | 10400            | 9330  |        |           |                      | 24          | 45        |
| 36                                    | 28-Nov-01                                                 | · 5      | 10600                | 10470                | 11000     | 11100                    | 10300            | 9460  |        |           |                      | 24          | 46        |
| 37                                    | 29-Nov-01                                                 | 6        | 11200                | 10260                | 11100     | 10600                    | 9890             | 9460  | 1.035  | 1.778     | 2.97E-03             | 24          | 45        |
| 38                                    | 30-Nov-01                                                 | 7        | 10400                | 9853                 | 9960      | 10100                    | 9960             | 9390  |        |           |                      | 24          | 50        |
| 41                                    | 3-Dec-01                                                  | 8        | 10400                | 10090                | 10500     | 9960                     | 10100            | 9790  |        |           |                      | 24          | 45        |
| 42                                    | 4-Dec-01                                                  | 9        | 11200                | 10500                | 10900     | 10100                    | 10500            | 10500 |        |           |                      | 23          | 46        |
| 43 -                                  | 5-Dec-01                                                  | 10       | 10700                | 10630                | 11000     | 9820                     | 10900            | 10800 |        |           |                      | 23          | 47        |
| 44                                    | 6-Dec-01                                                  | 11       | 10500                | 9828                 | 10500     | 9330                     | 9790             | 9690  | 0.8592 | 1.606     | 2.51E-03             | 24          | 46        |
| 45                                    | 7-Dec-01                                                  | 12       | 11100                | 10430                | 10200     | 10100                    | 10600            | 10800 |        |           |                      | 23          | 45        |
| 48                                    | 10-Dec-01                                                 | 13       | 10400                | 9603                 | 8690      | 9460                     | 9460             | 10800 |        |           |                      | 23          | 45        |
| 49                                    | 11-Dec-01                                                 | · 14     | 11200                | 10850                | 11800     | 11300                    | 9790             | 10500 |        |           |                      | 24          | 45        |
| 50                                    | 12-Dec-01                                                 | 15       | 10200                | 10190                | 8960      | 10800                    | 9790             | 11200 |        |           |                      | 24          | 46        |
| 51                                    | 13-Dec-01                                                 | 16       | 10800                | 9518                 | 9960      | 9560                     | 8760             | 9790  | 0.7420 | 2.021     | 5.17E-03             | 24          | 45        |
| 52                                    | 14-Dec-01                                                 | 17       | 11000                | 10230                | 10100     | 10200                    | 10500            | 10100 |        |           |                      | 24          | 45        |
| 55                                    | 17-Dec-01                                                 | 18       | 11000                | 9960                 | 9290      | 9960                     | 10700            | 9890  |        |           |                      | 24          | 44        |
| 56                                    | 18-Dec-01                                                 | · 19     | 10600                | 9848                 | 9990      | 8900                     | 10000            | 10500 |        |           |                      | 23          | 45        |
| 57                                    | 19-Dec-01                                                 | 20       | 10300_               | 10160                | 9790      | 10300                    | 9460             | 11100 |        |           |                      | 24          | 46        |
|                                       |                                                           | Mean     | 10745                |                      |           | 10117                    |                  |       | 0.8787 | 1.802     | 3.55E-03             | 23.6        | 45.8      |
|                                       | 1                                                         | S.D.     | 328                  |                      |           | 708                      |                  |       | 0.1475 | 0.209     | 1.42E-03             | 0.5         | 1.3       |

# Page 1051

Table A

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS

| ,                             |           |          |                      |                      |           | Chamber Mo<br>Cumulative | •        |                     |        |           |                      |             |          |
|-------------------------------|-----------|----------|----------------------|----------------------|-----------|--------------------------|----------|---------------------|--------|-----------|----------------------|-------------|----------|
|                               |           |          |                      |                      |           | Group IVA                | - 20,000 | ) mg/m <sup>3</sup> |        |           |                      |             |          |
|                               |           |          |                      |                      |           |                          |          |                     |        |           |                      | Chamber Er  | vironmen |
|                               |           |          |                      |                      |           |                          |          |                     | P      | article S | Size                 | Mea         | ın       |
| Day                           | Date      | Exposure | Nominal              | Ana                  | lytical ( | Chamber Co               |          | on                  | De     | terminat  | ions                 | Temperature | Humidit  |
|                               |           | Number   |                      | Mean                 |           | Indiv                    |          |                     | MMAD   | GSD       | TMC                  |             |          |
|                               |           |          | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |           | (mg/                     | (m³)     |                     | (µm)   |           | (mg/m <sup>3</sup> ) | (°C)        | . (%)    |
| 31                            | 23-Nov-01 | 1        | 20400                | 20480                | 19700     | 20900                    | 21100    | 20200               |        |           |                      | 25          | 50       |
| 32                            | 24-Nov-01 | 2        | 20200                | 20330                | 20500     | 20200                    | 20100    | 20500               |        |           |                      | 25          | 51       |
| 34                            | 26-Nov-01 | 3        | 19800                | 20080                | 20200     | 19700                    | 20500    | 19900               |        |           |                      | 26          | 48       |
| 35                            | 27-Nov-01 | 4        | 19700                | 20380                | 19400     | 20800                    | 20200    | 21100               |        |           |                      | 24          | 48       |
| 3 <sup>.</sup> 6 <sup>.</sup> | 28-Nov-01 | . 5      | 19200                | 19750                | 19500     | 18800                    | 20500    | 20200               |        |           |                      | 24          | 49       |
| 37                            | 29-Nov-01 | 6        | 19900                | 20150                | 20600     | 19900                    | 19900    | 20200               | 0.9850 | 1.432     | 1.66E-03             | 24          | 50       |
| 38                            | 30-Nov-01 | 7        | 19000                | 19480                | 18800     | 19700                    | 19700    | 19700               |        |           |                      | 24          | 55       |
| 41                            | 3-Dec-01  | 8        | 18900                | 19400                | 19200     | 19800                    | 18000    | 20600               |        |           |                      | 25 .        | 48       |
| 42                            | 4-Dec-01  | 9        | 19600                | 20250                | 18900     | 21200                    | 21200    | 19700               |        |           |                      | 26          | 49       |
| 43                            | 5-Dec-01  | 10       | 20600                | 20430                | 20400     | 19900                    | 20600    | 20800               |        |           |                      | 26          | 49       |
| 44                            | 6-Dec-01  | 11       | 19400                | 19980                | 21300     | 17700                    | 20000    | 20900               | 0.9092 | 1.905     | 2.69E-03             | 26          | 50       |
| 45                            | 7-Dec-01  | 12       | 20000                | 19900                | 20000     | 21200                    | 19000    | 19400               |        |           |                      | 26          | 47       |
| 48                            | 10-Dec-01 | 13       | 20800                | 19550                | 18900     | 19400                    | 18900    | 21000               |        |           |                      | 26          | 47       |
| 49                            | 11-Dec-01 | 14       | 18700                | 19730                | 19700     | 18300                    | 21200    | 19700               |        |           |                      | 24          | 48       |
| 50                            | 12-Dec-01 | 15       | 20300                | 20630                | 20700     | 20900                    | 20500    | 20400 .             |        |           |                      | 25          | 49       |
| 51                            | 13-Dec-01 | 16       | 20000                | 19880                | 20000     | 20400                    | 19500    | 19600               | 0.7134 | 1.424     | 2.95E-03             | 24          | 48       |
| 52                            | 14-Dec-01 | 17       | 19400                | 19150                | 18100     | 20100                    | 19900    | 18500               |        |           |                      | 24          | 50       |
| 55                            | 17-Dec-01 | 18       | 18000                | 18880                | 18800     | 20800                    | 19000    | 16900               |        |           |                      | 25          | 48       |
| 56                            | 18-Dec-01 | 19       | 20100                | 20030                | 19400     | 20100                    | 20100    | 20500               |        |           |                      | 26          | 47       |
| 57 ·                          | 19-Dec-01 | 20       | 19200                | 19880                | 19000     | 20000                    | 20800    | 19700               |        |           |                      | 26          | 48       |
| ·                             | •••••     | Mean     | 19660                |                      | ·         | 19914                    |          |                     | 0.8692 | 1.587     | 2.43E-03             | 25.1        | 49.0     |
|                               |           | S.D.     | 695                  |                      |           | 881                      |          |                     | 0.1401 | 0.275     | 6.82E-04             | 0.9         | 1.8      |

| ····· | _         |               |                       |                      |           | hamber Mor  | itoring | Dogulto |        |           |                      | ·           |           |
|-------|-----------|---------------|-----------------------|----------------------|-----------|-------------|---------|---------|--------|-----------|----------------------|-------------|-----------|
|       |           |               | •                     |                      |           | umulative   | -       |         |        |           |                      |             |           |
|       |           |               |                       |                      |           | Group IVB   | -       |         |        |           |                      |             |           |
|       |           |               |                       |                      |           | 4           |         |         |        |           |                      | Chamber Er  | vironment |
| ί     |           |               |                       |                      |           |             |         | .,      | E      | Particle  | Size                 | Mea         | n         |
| Day   | Date      | Exposure      | Nominal               |                      | lytical ( | Chamber Con |         | on      |        | eterminat |                      | Temperature | Humidity  |
|       |           | Number        | 2                     | Mean                 |           | Indivi      |         |         | ·MMAD  | GSD       | TMC                  |             |           |
|       |           |               | .(mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |           | (mg/        |         |         | (µm)   |           | (mg/m <sup>3</sup> ) | (°C)        | (%)       |
| 31    | 23-Nov-01 | 1             | 20400                 | 21150                | 20600     | 21200       | 21600   | 21200   |        |           |                      | 24          | 49        |
| 32    | 24-Nov-01 | 2             | 20200                 | 19900                | 19400     | 20400       | 19600   | 20200   |        |           |                      | 24          | 52        |
| 34    | 26-Nov-01 | 3             | 19800                 | 20280                | 19800     | 21200       | 20200   | 19900   |        |           |                      | 24          | 48        |
| 35.   | 27-Nov-01 | · 4           | 19700                 | . 19450              | 19200     | 19500       | 18600   | 20500   |        |           |                      | 25          | 48        |
| 36    | 28-Nov-01 | 5             | 19200                 | 20130                | 18600     | 21600       | 20600   | 19700   |        |           |                      | 25          | 49        |
| 37    | 29-Nov-01 | 6             | 19900                 | 19600                | 18600     | 20500       | 19900   | 19400   | 1.201  | 2.588     | 3.51E-03             | 25          | 49        |
| 38    | 30-Nov-01 | <sup></sup> 7 | 19000                 | 19130                | 19100     | 19400       | 19400   | 18600   |        |           |                      | 25          | 54        |
| 41    | 3-Dec-01  | 8             | 18900                 | 19600                | 19200     | 19800       | 18800   | 20600   |        |           |                      | 25          | 48        |
| 42    | 4-Dec-01  | 9             | 19600                 | 20400                | 19400     | 20500       | 21200   | 20500   |        |           |                      | 24          | 49        |
| 43    | 5-Dec-01  | 10            | 20600                 | 20780                | 20500     | 21200       | 20700   | 20700   |        |           |                      | 24          | 49        |
| 44    | 6-Dec-01  | 11            | ·19400                | 19800                | 21200     | 17300       | 19900   | 20800   | 1.784  | 3.162     | 7.82E-03             | 24          | 50        |
| 45    | 7-Dec-01  | 12            | 20000                 | 19800                | 19400     | 19700       | 20100   | 20000   |        |           |                      | 24          | 48        |
| 48    | 10-Dec-01 | 13            | 20800                 | 19780                | 19700     | 19700       | 19400   | 20300   |        |           |                      | 24          | 48        |
| 49    | 11-Dec-01 | 14            | 18700                 | 19330                | 18600     | 17700       | 21300   | 19700   |        |           |                      | 26          | 47        |
| .50   | 12-Dec-01 | 15            | 20300                 | 19630                | 18500     | 20500       | 19400   | 20100   |        |           |                      | 25          | 48        |
| 51    | 13-Dec-01 | 16            | 20000                 | 19130                | 19300     | · 19600     | 18900   | 18700   | 0.7145 | 1.806.    | 6.92E-03             | 25          | 48        |
| 52    | 14-Dec-01 | . 17          | 19400                 | 19730                | 18600     | 19700       | 19800   | 20800   |        |           |                      | 25          | 48        |
| 55    | 17-Dec-01 | : 18          | 18000                 | 19280                | 18800     | 18800       | 20100   | 19400   |        |           |                      | 25          | 48        |
| 56    | 18-Dec-01 | 19            | 20100                 | 19850                | 19700     | 19700       | 19400   | 20600   |        |           |                      | 24          | 49        |
| 57    | 19-Dec-01 | 20            | 19200                 | 20000                | 19200     | 20700       | 19700   | 20400   |        |           |                      | 24          | 49        |
|       |           | Mean          | 19660                 |                      |           | 19835       |         |         | 1.233  | 2.519     | 6.08E-03             | 24.6        | 48.9      |
|       |           | S.D.          | 695                   |                      | :         | 883         |         |         | 0.535  | 0.681     | 2.27E-03             | 0.6         | 1.6       |

Table A

Page 1052

.

Huntingdon Life Sciences 00-6129G Page 1053 Genotoxicity Sub-Group TABLE B . GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS MALES SUMMARY OF CLINICAL OBSERVATIONS DAY OF STUDY GROUP# -3 TOTAL \_\_\_\_\_ # OF ANIMALS EXAMINED 15 5 2 3 5 4 5 65 NORMAL WITHIN NORMAL LIMITS 1 5 5 2 5 5 3 5 5 4 5 5 6 5 5

Huntingdon Life Sciences 00-6129G Page 1054 Genotoxicity Sub-Group TABLE B GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS FEMALES SUMMARY OF CLINICAL OBSERVATIONS . \_\_\_\_\_ DAY OF STUDY GROUP# -3 TOTAL \_\_\_\_\_ # OF ANIMALS EXAMINED 1 5 2 5 3 5 4 5 65 NORMAL WITHIN NORMAL LIMITS 15 5 2 5 5 5 3 5 4 5 5 6 5 5

Page 1055

#### TABLE C

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| ALES |          |                             | MEA  | N BODY WEIGHTS (G) | RAMS)        |             |                     |
|------|----------|-----------------------------|------|--------------------|--------------|-------------|---------------------|
|      |          | DOSE GROUP:<br>VEL (MG/M3): | I    | II<br>2000         | III<br>10000 | IV<br>20000 | VI<br>MICRO+CONTROL |
|      | DOSE LEV |                             |      | 2000               |              | 20000       |                     |
| WEEK | -1       | MEAN                        | 130  | 131                | 131          | 129         | 129                 |
|      |          | S.D.                        | 9.1  | 6.8                | 9.7          | 10.3        | 14.7                |
|      |          | N                           | 5    | 5                  | 5            | 5           | 5                   |
| WEEK | 0        | MEAN                        | 172  | 171                | 171          | 170         | 171                 |
|      |          | S.D.                        | 11.7 | 11.0               | 10.1         | 11.1        | 16.8                |
|      |          | N                           | 5    | 5                  | 5            | 5           | 5                   |
| WEEK | 1        | MEAN                        | 232  | 227                | · 227        | 223         | 234                 |
|      |          | S.D.                        | 16.9 | 15.4               | 16.3         | 15.2        | 20.1                |
|      |          | N                           | 5    | 5                  | 5            | 5           | 5                   |
| WEEK | 2        | MEAN                        | 287  | 277                | 278          | 271         | 289                 |
|      |          | S.D.                        | 20.1 | 21.0               | 17.0         | 16.3        | 18.8                |
|      |          | N                           | 5    | 5                  | 5            | 5           | 5                   |
| WEEK | 3        | MEAN                        | 336  | 322                | 325          | 320         | 337                 |
|      |          | S.D.                        | 20.0 | 24.4               | 19.8         | 23.7        | 18.6                |
|      |          | N                           | 5    | 5                  | 5            | 5           | 5                   |
| WEEK | 4        | MEAN                        | 375  | 359                | 365          | 356         | 377                 |
|      |          | S.D.                        | 23.9 | 28.0               | 23.6         | 24.3        | 19.1                |
|      |          | N                           | 5    | 5                  | 5            | 5           | 5                   |

No statistically significant differences

.

č

Page 1056

TABLE C

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES |    |                            | MEAI   | N BODY WEIGHTS (GF | (AMS)        |             |                     |
|---------|----|----------------------------|--------|--------------------|--------------|-------------|---------------------|
|         |    | OOSE GROUP:<br>SL (MG/M3): | I<br>0 | II<br>2000         | III<br>10000 | IV<br>20000 | VI<br>MICRO+CONTROL |
|         |    |                            |        |                    |              |             |                     |
| WEEK    | -1 | MEAN                       | 105    | 104                | 106          | 105         | 106                 |
|         |    | S.D.                       | 6.0    | 3.9                | 5.0          | 4.6         | 5.0                 |
|         |    | N                          | 5      | 5                  | 5            | 5           | 5                   |
| WEEK    | 0  | MEAN                       | 136    | 136                | 137          | 136         | 137                 |
|         |    | S.D.                       | 5.0    | 3.8                | 5.0          | 3.7         | 5.3                 |
|         |    | N                          | 5      | 5                  | 5            | 5           | 5                   |
| WEEK    | 1. | MEAN                       | 176    | 174                | 172          | 167         | 181                 |
|         |    | S.D.                       | 12,4   | 10.5               | 5.8          | 6.8         | 7.1                 |
|         |    | N                          | 5      | 5                  | 5            | 5           | 5                   |
| WEEK    | 2  | MEAN                       | 207    | 199                | 199          | 191         | 205                 |
|         |    | S.D.                       | 17.3   | 13.7               | 9.0          | 6.9         | 10.4                |
|         |    | N                          | 5      | 5                  | 5            | 5           | 5                   |
| WEEK    | 3  | MEAN                       | 237    | 226                | 223          | 218         | 232                 |
|         | -  | S.D.                       | 21.1   | 19.0               | 11.3         | 10.8        | 5.7                 |
|         |    | N                          | 5      | 5                  | 5            | 5           | 5                   |
| WEEK    | 4  | MEAN                       | 259    | 246                | 245          | 236         | 252                 |
|         |    | S.D.                       | 18.8   | 20.0               | 15.8         | 12.5        | 10.6                |
|         |    | N                          | 5      | 5                  | 5            | 5           | 5                   |

Page 1057

## TABLE D

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

|      |      | DOSI     | E GROUP: | I    | II   | III   | IV    | VI  |
|------|------|----------|----------|------|------|-------|-------|-----|
|      | DO.  | SE LEVEL |          | 0    | 2000 | 10000 | 20000 |     |
| WEEK | 0 TO | 1        | MEAN     | 60   | 56   | 55    | 53    | 63  |
|      |      |          | S.D.     | 6.2  | 7.2  | 7.6   | 6.1   | 3.5 |
|      |      |          | N        | 5    | 5    | 5     | 5     | 5   |
| WEEK | 0 ТО | 2        | MEAN     | 115  | 106  | 107   | 101   | 118 |
|      |      |          | S.D.     | 11.3 | 12.8 | 9.3   | 8.9   | 4.5 |
|      |      |          | N        | 5    | 5    | 5     | 5     | 5   |
| WEEK | о то | 3        | MEAN     | 165  | 151  | 154   | 150   | 167 |
| •    |      |          | S.D.     | 12.0 | 17.7 | 12.0  | 14.4  | 6.1 |
|      |      |          | N        | 5    | 5    | 5     | 5     | 5   |
| WEEK | о то | 4        | MEAN     | 203  | 187  | 193   | 186   | 206 |
|      |      |          | S.D.     | 15.5 | 21.7 | 15.6  | 14.9  | 7.5 |
|      |      |          | N        | 5    | 5    | 5     | 5     | 5   |

No statistically significant differences

.

Page 1058

## TABLE D

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES | S MEAN BODY WEIGHT CHANGE FROM BASELINE (GRAMS) |                 |                       |                  |                  |                  |                 |                     |  |
|---------|-------------------------------------------------|-----------------|-----------------------|------------------|------------------|------------------|-----------------|---------------------|--|
|         | DO                                              | DOS<br>SE LEVEL | SE GROUP:<br>(MG/M3): | I<br>O           | II<br>2000       | III<br>10000     | IV<br>20000     | VI<br>MICRO+CONTROL |  |
| WEEK    | 0 ТО                                            | 1               | MEAN<br>S.D.<br>N     | 40<br>9.2<br>5   | 38<br>8.9<br>5   | 35<br>5,8<br>5   | 31<br>3.8<br>5  | 44<br>7.0<br>5      |  |
| WEEK    | 0 TO                                            | 2               | MEAN<br>S.D.<br>N     | 70<br>13.9<br>5  | 63<br>10.4<br>5  | 62<br>8.4<br>5   | 55<br>3.8<br>5  | 67<br>7.9<br>5      |  |
| WEEK    | 0 TO                                            |                 | MEAN<br>S.D.<br>N     | 101<br>17.7<br>5 | 89<br>15.8<br>5  | 86<br>8.8<br>5   | 82<br>7.9<br>5  | 95<br>6.3<br>5      |  |
| WEEK    | 0 ТО                                            | 4               | MEAN<br>S.D.<br>N     | 123<br>15.9<br>5 | 110<br>16.5<br>5 | 107<br>15.3<br>5 | 100<br>9.4<br>5 | 115<br>11.0<br>5    |  |

Page 1059

TABLE E

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| ALES |            |                          | MEAN FEED CONS | UMPTION VALUES ( | GRAMS/KG/DAY) |             |                     |
|------|------------|--------------------------|----------------|------------------|---------------|-------------|---------------------|
|      | DOSE LEVEI | DSE GROUP:<br>J (MG/M3): | I<br>0         | II<br>2000       | III<br>10000  | IV<br>20000 | VI<br>MICRO+CONTROL |
|      |            |                          |                |                  |               |             |                     |
| WEEK | 0          | MEAN                     | 140            | 137              | 136           | 136         | 158                 |
|      |            | S.D.                     | 5.7            | 4.7              | 2.6           | 5.5         | 38.2                |
|      |            | N                        | 5              | 5                | 5             | 5           | 5                   |
| WEEK | 1          | MEAN                     | 117            | 116              | 115           | 113         | 121                 |
|      |            | S.D.                     | 4.2            | 4.4              | 4.0           | 5.4         | 5.3                 |
|      |            | N                        | 5              | 5                | 5             | 5           | 5                   |
| WEEK | 2          | MEAN                     | 98             | 100              | 96            | 96          | 102                 |
|      |            | S.D.                     | 4.3            | 2.3              | 1.0           | 3.3         | 5.8                 |
|      |            | N                        | 5              | 4                | 5             | 5           | 5                   |
| WEEK | 3          | MEAN                     | 88             | 90               | 87            | 88          | 90                  |
|      | -          | S.D.                     | 2.6            | 1.6              | 1.6           | 3.9         | 5.7                 |
|      |            | N                        | 5              | 5                | 5             | 5           | 5                   |
| WEEK | 4          | MEAN                     | 79             | 80               | 79            | 80          | 80                  |
|      |            | S.D.                     | 2.0            | 1.4              | 2.1           | 2,1         | 4.7                 |
| •    |            | N                        | 5              | 5                | 5             | 5           | 5                   |

Page 1060

TABLE E

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| EMALES |   |                          | MEAN FEED CONS | UMPTION VALUES ( | GRAMS/KG/DAY) |             |                     |
|--------|---|--------------------------|----------------|------------------|---------------|-------------|---------------------|
|        |   | OSE GROUP:<br>L (MG/M3): | I<br>O         | II<br>2000       | III<br>10000  | IV<br>20000 | VI<br>MICRO+CONTROL |
|        |   |                          |                |                  |               |             |                     |
| WEEK   | 0 | MEAN                     | 144            | 144              | 141           | 147         | 143                 |
|        |   | S.D.                     | 3.2            | 5.7              | 5.1           | 7.6         | 7.7                 |
|        |   | N                        | 5              | 4                | 5             | 5           | 5                   |
| WEEK   | 1 | MEAN                     | 121            | 119              | 120           | 118         | 125                 |
|        |   | S.D.                     | 3.4            | 5.8              | 5.8           | 3.5         | 8.4                 |
|        |   | N                        | 5              | 5                | 5             | 5           | 5                   |
| WEEK   | 2 | MEAN                     | 104            | 106              | 108           | 105         | 108                 |
|        |   | S.D.                     | 5.9            | 5.5              | 14.1          | 5.0         | 3.3                 |
|        |   | N                        | 5              | 5                | 5             | 4           | 5                   |
| WEEK   | 3 | MEAN                     | 96             | 98               | 96            | 94          | 98                  |
|        |   | . S.D.                   | 5.0            | 7.6              | 4.9           | 5.7         | 3.1                 |
|        |   | N                        | 5              | 5                | 5             | 5           | 5                   |
| WEEK   | 4 | MEAN                     | 88             | 93               | 91            | 86          | 88                  |
|        |   | S.D.                     | 5.3            | 8.4              | 6.9           | 3.9         | 5.0                 |
|        |   | N                        | 5              | 5                | 5             | 5           | 5                   |

18-FEB-2009 19:37

Huntingdon Life Sciences 00-6129G Page 1061 Genotoxicity Sub-Group TABLE F GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS INDIVIDUAL CLINICAL OBSERVATIONS MALES GROUP I 0 MG/M3 \_\_\_\_\_ DAY OF ANIMAL# OBSERVATIONS STUDY 3 1081 WITHIN NORMAL LIMITS ₽ 1082 WITHIN NORMAL LIMITS Ρ 1083 WITHIN NORMAL LIMITS Ρ 1084 WITHIN NORMAL LIMITS Ρ 1085 WITHIN NORMAL LIMITS ₽ CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

18-FEB-2009 19:37

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

.

Page 1062

TABLE F

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

## INDIVIDUAL CLINICAL OBSERVATIONS

| MALES    | GROUP II 20    | 000 MG/M3              |                 |        |
|----------|----------------|------------------------|-----------------|--------|
| ANIMAL#  | OBSERVATIONS   | 5                      | DAY OF<br>STUDY | -<br>3 |
| 2071     | WITHIN NORM    | AL LIMITS              |                 | P      |
| 2072     | WITHIN NORM    | AL LIMITS              |                 | P      |
| 2073     | WITHIN NORM    | AL LIMITS              |                 | P      |
| 2074     | WITHIN NORM    | AL LIMITS              |                 | P      |
| 2075     | WITHIN NORM    | AL LIMITS              |                 | P      |
| CODE: 1- | SLIGHT 2-MODER | ATE 3-MARKED P-PRESENT |                 |        |

Page 1063

TABLE F

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| MALES ( | GROUP III 10000 MG/M3 | INDIVIDUAL CLIN | ICAL OBSERVATIONS |
|---------|-----------------------|-----------------|-------------------|
| ANIMAL# | OBSERVATIONS          | DAY OF<br>STUDY | 3                 |
| 3071    | WITHIN NORMAL LIMITS  |                 | P                 |
| 3072    | WITHIN NORMAL LIMITS  |                 | P                 |
| 3073    | WITHIN NORMAL LIMITS  |                 | P                 |
| 3074    | WITHIN NORMAL LIMITS  |                 | P                 |
| 3075    | WITHIN NORMAL LIMITS  |                 | P                 |
|         |                       |                 |                   |

18-FEB-2009 19:38

.

1

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1064

TABLE F

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL CLINICAL OBSERVATIONS

| MALES   | GROUP IV 20000 MG/M3 |                 |        |
|---------|----------------------|-----------------|--------|
| ANIMAL# | OBSERVATIONS         | DAY OF<br>STUDY | -<br>3 |
| 4081    | WITHIN NORMAL LIMITS |                 | P      |
| 4082    | WITHIN NORMAL LIMITS |                 | P      |
| 4083    | WITHIN NORMAL LIMITS |                 | P      |
| 4084    | WITHIN NORMAL LIMITS |                 | P      |
| 4085    | WITHIN NORMAL LIMITS |                 | P      |
|         |                      | _               |        |

.

Page 1065

TABLE F

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

## INDIVIDUAL CLINICAL OBSERVATIONS

| MALES (    | FROUP VI MICRO+CONTROL | INDIVIDUAL CLIN. | ICAL OBSERVATIONS |
|------------|------------------------|------------------|-------------------|
| ANIMAL#    | OBSERVATIONS           | DAY OF<br>STUDY  | 3                 |
| 6051       | WITHIN NORMAL LIMITS   |                  | P                 |
| 6052       | WITHIN NORMAL LIMITS   |                  | P                 |
| 6053       | WITHIN NORMAL LIMITS   |                  | P                 |
| 6054       | WITHIN NORMAL LIMITS   |                  | P                 |
| 6055       | WITHIN NORMAL LIMITS   |                  | P                 |
| CODE: 1.61 |                        |                  |                   |

18-FEB-2009 19:39

Huntingdon Life Sciences 00-6129G Page 1066 Genotoxicity Sub-Group TABLE F . GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS INDIVIDUAL CLINICAL OBSERVATIONS FEMALES GROUP I 0 MG/M3 DAY OF -ANIMAL# OBSERVATIONS STUDY 3 1591 WITHIN NORMAL LIMITS ₽ 1592 WITHIN NORMAL LIMITS ₽ 1593 WITHIN NORMAL LIMITS P 1594 WITHIN NORMAL LIMITS Ρ 1595 WITHIN NORMAL LIMITS Ρ CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

18-FEB-2009 19:39

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1067

TABLE F

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES GROUP II 2000 MG/M3

| ANIMAL# | OBSERVATIONS         | DAY OF<br>STUDY | 3 |
|---------|----------------------|-----------------|---|
| 2581    | WITHIN NORMAL LIMITS |                 | p |
| 2582    | WITHIN NORMAL LIMITS |                 | P |
| 2583    | WITHIN NORMAL LIMITS |                 | P |
| 2584    | WITHIN NORMAL LIMITS |                 | P |
| 2585    | WITHIN NORMAL LIMITS |                 | P |
|         |                      |                 |   |

.

Page 1068

TABLE F

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES GROUP III 10000 MG/M3 \_\_\_\_\_ DAY OF STUDY ANIMAL# OBSERVATIONS 3 \_\_\_\_\_ 3581 WITHIN NORMAL LIMITS ₽ Ρ 3582 WITHIN NORMAL LIMITS 3583 WITHIN NORMAL LIMITS P WITHIN NORMAL LIMITS ₽ 3584 3585 WITHIN NORMAL LIMITS Ρ CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

. .

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

•

Page 1069

ł,

TABLE F

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

## INDIVIDUAL CLINICAL OBSERVATIONS

| FEMALES | GROUP IV 20000 MG/M3 |                 |   |
|---------|----------------------|-----------------|---|
| ANIMAL# | OBSERVATIONS         | DAY OF<br>STUDY | 3 |
| 4591    | WITHIN NORMAL LIMITS |                 | P |
| 4592    | WITHIN NORMAL LIMITS |                 | P |
| 4593    | WITHIN NORMAL LIMITS |                 | P |
| 4594    | WITHIN NORMAL LIMITS |                 | P |
| 4595    | WITHIN NORMAL LIMITS |                 | P |
| 00000.1 |                      |                 |   |

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1070

TABLE F

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL CLINICAL OBSERVATIONS

| FEMALES  | GROUP VI MICRO+CONTROL               |                 |     |
|----------|--------------------------------------|-----------------|-----|
| ANIMAL#  | OBSERVATIONS                         | DAY OF<br>STUDY | - 3 |
| 6561     | WITHIN NORMAL LIMITS                 |                 | P   |
| 6562     | WITHIN NORMAL LIMITS                 |                 | P   |
| 6563     | WITHIN NORMAL LIMITS                 |                 | p   |
| 6564     | WITHIN NORMAL LIMITS                 |                 | P   |
| 6565     | WITHIN NORMAL LIMITS                 |                 | P   |
| CODE: 1- | SLIGHT 2-MODERATE 3-MARKED P-PRESENT |                 |     |

Page 1071

TABLE G

|         |         |      |         |      |      |      | INDIVID | UAL BODY WEIGHTS (GRAMS) |
|---------|---------|------|---------|------|------|------|---------|--------------------------|
| MALES   | GROUP I | 0 1  | мд/мз   |      |      |      |         |                          |
|         |         | WEEI | K OF ST | JDY  |      |      |         |                          |
| ANIMAL# |         | -1   | 0       | l    | 2    | 3    | 4       |                          |
| 1081    | 1       | .23  | 164     | 223  | 275  | 325  | 359     |                          |
| 1082    | 1       | .30  | 170     | 234  | 288  | 339  | 371     |                          |
| 1083    | 1       | .21  | 158     | 208  | 260  | 309  | 348     |                          |
| 1084    | 1       | .44  | 188     | 251  | 301  | 348  | 390     |                          |
| 1085    | 1       | .33  | 178     | 243  | 310  | 361  | 407     |                          |
| MEAN    | 1       | .30  | 172     | 232  | 287  | 336  | 375     |                          |
| S.D.    | 9       | .1   | 11.7    | 16.9 | 20.1 | 20.0 | 23.9    |                          |
| N       |         | 5    | 5       | 5    | 5    | 5    | 5       |                          |

7

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

.

.-

Page 1072

## TABLE G

|         |            |          |      |      |      | INDIVIDU | JAL BODY WEIGHTS (GRAMS) |
|---------|------------|----------|------|------|------|----------|--------------------------|
| MALES   | GROUP II : | 2000 MG/ | мз   |      |      |          |                          |
|         | WEI        | EK OF ST | UDY  |      |      |          |                          |
| ANIMAL# | -1         | 0        | l    | 2    | 3    | 4        |                          |
| 2071    | 127        | 170      | 233  | 279  | 332  | 366      |                          |
| 2072    | 122        | 154      | 202  | 245  | 285  | 319      |                          |
| 2073    | 132        | 172      | 228  | 289  | 338  | 380      |                          |
| 2074    | 134        | 179      | 227  | 273  | 312  | 342      |                          |
| 2075    | . 140      | 183      | 244  | 301  | 345  | 386      |                          |
| MEAN    | 131        | 171      | 227  | 277  | 322  | 359      |                          |
| s.D.    | 6.8        | 11.0     | 15.4 | 21.0 | 24.4 | 28.0     |                          |
| N       | 5          | 5        | 5    | 5    | 5    | 5        |                          |

MALES

.

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

GROUP III 10000 MG/M3

Page 1073

TABLE G

|         | WEED | K OF ST | UDY  |      |      |      |
|---------|------|---------|------|------|------|------|
| ANIMAL# | -1   | 0       | 1    | 2    | 3    | 4    |
| 3071    | 119  | 157     | 199  | 249  | 293  | 329  |
| 3072    | 141  | 183     | 241  | 292  | 344  | 391  |
| 3073    | 124  | 167     | 226  | 278  | 323  | 359  |
| 3074    | 140  | 179     | 235  | 284  | 329  | 365  |
| 3075    | 130  | 171     | 232  | 288  | 338  | 380  |
| MEAN    | 131  | 171     | 227  | 278  | 325  | 365  |
| S.D.    | 9.7  | 10.1    | 16.3 | 17.0 | 19.8 | 23.6 |
| N       | 5    | 5       | 5    | 5    | 5    | 5    |

Page 1074

TABLE G

|         |            |          |      |      |      | INDIVID | JAL BODY WEIGHTS (GRAMS) |
|---------|------------|----------|------|------|------|---------|--------------------------|
| MALES   | GROUP IV 2 | 20000 MG | /мз  |      |      |         |                          |
|         | WEE        | K OF ST  | UDY  |      |      |         |                          |
| ANIMAL# | -1         | 0        | 1    | 2    | 3    | 4       |                          |
| 4081    | 114        | 153      | 201  | 250  | 286  | 320     |                          |
| 4082    | 129        | 167      | 214  | 261  | 305  | 342     |                          |
| 4083    | 136        | 176      | 230  | 273  | 334  | 375     |                          |
| 4084    | 126        | 172      | 234  | 287  | 339  | 373     |                          |
| 4085    | 141        | 182      | 238  | 287  | 337  | 370     |                          |
| MEAN    | 129        | 170      | 223  | 271  | 320  | 356     |                          |
| S.D.    | 10.3       | 11.1     | 15.2 | 16.3 | 23.7 | 24.3    |                          |
| N       | 5          | 5        | 5    | 5    | 5    | 5       |                          |

.

١

,

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1075

TABLE G

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| MALES   | GROUP VI | M        | ICRO+COI | NTROL |      |      | INDIVIDU | JAL BODY WEIGHTS (GRAMS)                |
|---------|----------|----------|----------|-------|------|------|----------|-----------------------------------------|
|         |          | <br>1999 | K OF ST  |       |      |      |          |                                         |
| ANIMAL# |          | -1       | 0        | 1     | 2    | 3    | 4        |                                         |
| 6051    |          | 111      | 147      | 204   | 261  | 310  | 352      | *************************************** |
| 6052    |          | 122      | 162      | 225   | 284  | 334  | 372      |                                         |
| 6053    |          | 132      | 175      | 240   | 296  | 346  | 387      |                                         |
| 6054    |          | 132      | 178      | 244   | 290  | 335  | 371      |                                         |
| 6055    |          | 151      | 191      | 257   | 313  | 361  | 403      |                                         |
| MEAN    |          | 129      | 171      | 234   | 289  | 337  | 377      |                                         |
| S.D.    | 1        | 4.7      | 16.8     | 20.1  | 18.8 | 18.6 | 19.1     |                                         |
| N       |          | 5        | 5        | 5     | 5    | 5    | 5        |                                         |

.

.

18-FEB-2009 19:44

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1076

TABLE G

|         |         |      |        |      |      |      | INDIVIDU | AL BODY WEIGHTS (GRAMS) |
|---------|---------|------|--------|------|------|------|----------|-------------------------|
| FEMALES | GROUP I | 1 0  | 1G/M3  |      |      |      |          |                         |
|         |         | WEEH | COF ST | UDY  |      |      |          |                         |
| ANIMAL# |         | -1   | 0      | 1    | 2    | 3    | 4        |                         |
| 1591    |         | 97   | 132    | 173  | 200  | 234  | 262      |                         |
| 1592    |         | 109  | 138    | 190  | 227  | 259  | 279      |                         |
| 1593    |         | 106  | 136    | 173  | 204  | 236  | 252      |                         |
| 1594    |         | 102  | 132    | 158  | 183  | 205  | 231      |                         |
| 1595    |         | 113  | 144    | 186  | 220  | 254  | 273      |                         |
| MEAN    |         | 105  | 136    | 176  | 207  | 237  | 259      |                         |
| S.D.    |         | 6.0  | 5.0    | 12.4 | 17.3 | 21.1 | 18.8     |                         |
| N       |         | 5    | 5      | 5    | 5    | 5    | 5        |                         |

Page 1077

## TABLE G

|         | WEER | OF ST | JDY  |      |      |      |  |
|---------|------|-------|------|------|------|------|--|
| ANIMAL# | -1   | 0     | 1    | 2    | 3    | 4    |  |
| 2581    | 101  | 138   | 173  | 203  | 239  | 260  |  |
| 2582    | 108  | 137   | 170  | 198  | 218  | 251  |  |
| 2583    | 108  | 141   | 186  | 218  | 249  | 266  |  |
| 2584    | 100  | 133   | 182  | 197  | 222  | 240  |  |
| 2585    | 102  | 131   | 159  | 180  | 200  | 215  |  |
| MEAN    | 104  | 136   | 174  | 199  | 226  | 246  |  |
| s.D.    | 3.9  | 3.8   | 10.5 | 13.7 | 19.0 | 20.0 |  |
| N       | 5    | 5     | 5    | 5    | 5    | 5    |  |

-

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1078

TABLE G

| FEMALES | GROUP III | 1    | 0000 MG | /мз    |     | :    | INDIVIDU | DUAL BODY WEIGHTS (GRAMS) |
|---------|-----------|------|---------|--------|-----|------|----------|---------------------------|
|         |           | WEEK | OF STU  | <br>DY |     |      |          |                           |
| ANIMAL# |           | -1   | 0       | 1      | 2   | 3    | 4        |                           |
| 3581    |           | 104  | 135     | 167    | 189 | 208  | 223      |                           |
| 3582    |           | 107  | 139     | 171    | 198 | 223  | 239      |                           |
| 3583    |           | 101  | 132     | 176    | 207 | 226  | 260      |                           |
| 3584    |           | 103  | 136     | 167    | 193 | 219  | 241      |                           |
| 3585    |           | 114  | 145     | 180    | 210 | 239  | 261      |                           |
| MEAN    |           | 106  | 137     | 172    | 199 | 223  | 245      |                           |
| s.D.    |           | 5.0  | 5.0     | 5,8    | 9.0 | 11.3 | 15.8     |                           |
| N       |           | 5    | 5       | 5      | 5   | 5    | 5        |                           |

Page 1079

TABLE G

|           |            |          |         |     |      | INDIVIDU | JAL BODY WEIGHTS (GRAMS) |
|-----------|------------|----------|---------|-----|------|----------|--------------------------|
| FEMALES G | ROUP IV 20 | 0000 MG/ | ′мз     |     |      |          |                          |
|           | WEEF       | COF STU  | <br>JDY |     |      |          |                          |
| ANIMAL#   | -1         | 0        | 1.      | 2   | 3    | 4        |                          |
| 4591      | 105        | 140      | 169     | 199 | 229  | 245      |                          |
| 4592      | 109        | 136      | 170     | 190 | 208  | 227      |                          |
| 4593      | 109        | 139      | 174     | 196 | 230  | 253      |                          |
| 4594      | 104        | 134      | 163     | 183 | 213  | 233      |                          |
| 4595      | 98         | 131      | 157     | 185 | 211  | 223      |                          |
| MEAN      | 105        | 136      | 167     | 191 | 218  | 236      |                          |
| S.D.      | 4.6        | 3.7      | 6.8     | 6.9 | 10.8 | 12.5     |                          |
| N         | 5          | 5        | 5       | 5   | 5    | 5        |                          |

.

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1080

#### TABLE G

| FEMALES | GROUP VI | MI   | CRO+CON | TROL |      | :   | INDIVIDU | JAL BODY WEIGHTS (GRAMS) |
|---------|----------|------|---------|------|------|-----|----------|--------------------------|
|         |          | WEEK | OF STU  | DY   |      |     |          |                          |
| ANIMAL# |          | -1   | 0       | 1    | 2    | 3   | 4        |                          |
| 6561    |          | 105  | 136     | 182  | 213  | 238 | 267      |                          |
| 6562    |          | 111  | 145     | 188  | 217  | 236 | 254      |                          |
| 6563    |          | 105  | 135     | 169  | 191  | 223 | 237      |                          |
| 6564    |          | 111  | 139     | 181  | 204  | 230 | 253      |                          |
| 6565    |          | 99   | 131     | 184  | 199  | 232 | 249      |                          |
| MEAN    |          | 106  | 137     | 181  | 205  | 232 | 252      |                          |
| S.D.    |          | 5.0  | 5.3     | 7.1  | 10.4 | 5.7 | 10.6     |                          |
| N       |          | 5    | 5       | 5    | 5    | 5   | 5        |                          |

Page 1081

TABLE H

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| INDIVIDUAL | BODY | WEIGHT | CHANGE | FROM | BASELINE | (GRAMS) |  |
|------------|------|--------|--------|------|----------|---------|--|
|            |      |        |        |      |          |         |  |

| MALES   | GROUP I | 0 1  | 4G/M3  |      |      |  |
|---------|---------|------|--------|------|------|--|
|         |         | WEEK | OF STU | DY   |      |  |
| ANIMAL# |         | 0-1  | 0-2    | 0-3  | 0-4  |  |
| 1081    |         | 59   | 110    | 161  | 195  |  |
| 1082    |         | 63   | 118    | 169  | 201  |  |
| 1083    |         | 50   | 102    | 151  | 190  |  |
| 1084    |         | 63   | 113    | 160  | 202  |  |
| 1085    |         | 66   | 132    | 183  | 230  |  |
| MEAN    |         | 60   | 115    | 165  | 203  |  |
| S.D.    |         | 6.2  | 11.3   | 12.0 | 15,5 |  |
| N       |         | 5    | 5      | 5    | 5    |  |

.

Page 1082

TABLE H

| TITLE      | DODI | WEAT OTTO |        | EDOM |          | (CDAMC) |
|------------|------|-----------|--------|------|----------|---------|
| INDIVIDUAL | BODI | METCHI.   | CHANGE | FROM | BASELINE | (GRAMS) |

| MALES GRO | OUP II 2 | 000 MG/1 | мз   |      |  |
|-----------|----------|----------|------|------|--|
|           | WEEK     | OF STU   | DY   |      |  |
| animal#   | 0-1      | 0-2      | 0-3  | 0-4  |  |
| 2071      | 64       | 110      | 162  | 196  |  |
| 2072      | 48       | 90       | 131  | 164  |  |
| 2073      | 57       | 117      | 167  | 209  |  |
| 2074      | 48       | 94       | 133  | 163  |  |
| 2075      | 61       | 118      | 162  | 203  |  |
| MEAN      | 56       | 106      | 151  | 187  |  |
| S.D.      | 7.2      | 12.8     | 17.7 | 21.7 |  |
| N         | 5        | 5        | 5    | 5    |  |

.

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

,

Page 1083

TABLE H

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| MALES   | GROUP | III I | .0000 MC | ∃∕МЗ   |      |  |
|---------|-------|-------|----------|--------|------|--|
|         |       | WEEK  | OF STU   | <br>2¥ |      |  |
| ANIMAL# |       | 0-1   | 0-2      | 0-3    | 0-4  |  |
| 3071    |       | 42    | 92       | 136    | 172  |  |
| 3072    |       | 58    | 109      | 161    | 208  |  |
| 3073    |       | 59    | 111      | 156    | 192  |  |
| 3074    |       | 56    | 106      | 150    | 186  |  |
| 3075    |       | 61    | 117      | 167    | 209  |  |
| MEAN    |       | 55    | 107      | 154    | 193  |  |
| S.D.    |       | 7.6   | 9.3      | 12.0   | 15.6 |  |
| N       |       | 5     | 5        | 5      | 5    |  |

Page 1084

.

TABLE H

|         |          |     |          |        |       | INDIVIDUAL BODY WEIGHT CHANGE FROM BASELINE (GRAMS) |
|---------|----------|-----|----------|--------|-------|-----------------------------------------------------|
| MALES   | GROUP IV | 20  | 0000 MG, | /мз    |       |                                                     |
| ******* | <br>W    | EEK | OF STU   | <br>2¥ |       |                                                     |
| ANIMAL# | 0        | -1  | 0-2      | 0-3    | 0 - 4 |                                                     |
| 4081    |          | 49  | 97       | 133    | 167   |                                                     |
| 4082    |          | 47  | 94       | 137    | 175   |                                                     |
| 4083    |          | 54  | 96       | 158    | 199   |                                                     |
| 4084    |          | 62  | 116      | 168    | 201   |                                                     |
| 4085    |          | 55  | 104      | 155    | 188   |                                                     |
| MEAN    |          | 53  | 101      | 150    | 186   |                                                     |
| S.D.    | 6        | .1  | 8.9      | 14.4   | 14.9  |                                                     |
| N       |          | 5   | 5        | 5      | 5     |                                                     |

.

Page 1085

TABLE H

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| MALES  | GROUP VI | I MI | CRO+CON | FROL  |     |  |
|--------|----------|------|---------|-------|-----|--|
|        |          | WEEK | OF STUD | <br>Х |     |  |
| ANIMAL | ŧ        | 0-1  | 0-2     | 0-3   | 0-4 |  |
| 6051   | L        | 58   | 114     | 163   | 205 |  |
| 6052   | 2        | 63   | 122     | 172   | 210 |  |
| 6053   | 3        | 65   | 121     | 171   | 212 |  |
| 6054   | 1        | 66   | 113     | 158   | 194 |  |
| 6055   | 5        | 66   | 121     | 170   | 211 |  |
| MEAN   |          | 63   | 118     | 167   | 206 |  |
| S.D.   |          | 3.5  | 4.5     | 6.1   | 7.5 |  |
| N      |          | 5    | 5       | 5     | 5   |  |

Page 1086

TABLE H

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL BODY WEIGHT CHANGE FROM BASELINE (GRAMS)

| FEMALES GROUP I 0 MG/M3 |      |        |       |      |  |  |  |  |  |
|-------------------------|------|--------|-------|------|--|--|--|--|--|
|                         | WEEK | OF STU | DY    |      |  |  |  |  |  |
| ANIMAL#                 | 0-1  | 0-2    | 0 - 3 | 0-4  |  |  |  |  |  |
| 1591                    | 41   | 68     | 102   | 130  |  |  |  |  |  |
| 1592                    | 52   | 89     | 121   | 141  |  |  |  |  |  |
| 1593                    | 38   | 68     | 100   | 116  |  |  |  |  |  |
| 1594                    | 26   | 51     | 73    | 99   |  |  |  |  |  |
| 1595                    | 42   | 76     | 110   | 129  |  |  |  |  |  |
| MEAN                    | 40   | 70     | 101   | 123  |  |  |  |  |  |
| S.D.                    | 9.2  | 13.9   | 17.7  | 15.9 |  |  |  |  |  |
| N                       | 5    | 5      | 5     | 5    |  |  |  |  |  |

7

Page 1087

TABLE H

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES | GROUP II | 20   | 00 MG/M | 13     |      |  |
|---------|----------|------|---------|--------|------|--|
|         |          | WEEK | OF STUE | Y<br>Y |      |  |
| ANIMAL# |          | 0-1  | 0-2     | 0-3    | 0-4  |  |
| 2581    |          | 34   | 64      | 100    | 122  |  |
| 2582    |          | 33   | 61      | 81     | 114  |  |
| 2583    |          | 46   | 78      | 109    | 125  |  |
| 2584    |          | 49   | 64      | 89     | 107  |  |
| 2585    |          | 28   | 49      | 68     | 84   |  |
| MEAN    |          | 38   | 63      | 89     | 110  |  |
| S.D.    |          | 8.9  | 10.4    | 15.8   | 16.5 |  |
| N       |          | 5    | 5       | 5      | 5    |  |

.

Page 1088

# TABLE H

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES | GROUP III | 1    | L0000 MG | /мз |      |  |
|---------|-----------|------|----------|-----|------|--|
|         | p         | veek | OF STUD  | Y   |      |  |
| ANIMAL# | (         | )-1  | 0-2      | 0-3 | 0-4  |  |
| 3581    |           | 32   | 54       | 73  | 88   |  |
| 3582    |           | 32   | 58       | 84  | 99   |  |
| 3583    |           | 45   | 75       | 94  | 128  |  |
| 3584    |           | 31   | 57       | 83  | 106  |  |
| 3585    |           | 35   | 65       | 94  | 116  |  |
| MEAN    |           | 35   | 62       | 86  | 107  |  |
| S.D.    | 5         | 5.8  | 8.4      | 8.8 | 15.3 |  |
| N       |           | 5    | 5        | 5   | 5    |  |

1

Page 1089

TABLE H

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

.

| FEMALES GROUP IV 20000 MG/M3 |  |      |         |     |     |  |  |  |  |  |
|------------------------------|--|------|---------|-----|-----|--|--|--|--|--|
|                              |  | WEEK | OF STUD | Y   |     |  |  |  |  |  |
| ANIMAL#                      |  | 0-1  | 0-2     | 0-3 | 0-4 |  |  |  |  |  |
| 4591                         |  | 30   | 60      | 89  | 105 |  |  |  |  |  |
| 4592                         |  | 35   | 54      | 72  | 91  |  |  |  |  |  |
| 4593                         |  | 35   | 56      | 91  | 113 |  |  |  |  |  |
| 4594                         |  | 29   | 49      | 79  | 99  |  |  |  |  |  |
| 4595                         |  | 26   | 54      | 80  | 92  |  |  |  |  |  |
| MEAN                         |  | 31   | 55      | 82  | 100 |  |  |  |  |  |
| S.D.                         |  | 3.8  | 3.8     | 7.9 | 9.4 |  |  |  |  |  |
| N                            |  | 5    | 5       | 5   | 5   |  |  |  |  |  |

.

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

,

Page 1090

TABLE H

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES GROUP VI MICRO+CONTROL |  |      |         |     |      |  |  |  |  |  |  |
|--------------------------------|--|------|---------|-----|------|--|--|--|--|--|--|
|                                |  | WEEK | OF STUD | Y   |      |  |  |  |  |  |  |
| ANIMAL#                        |  | 0-1  | 0-2     | 0-3 | 0-4  |  |  |  |  |  |  |
| 6561                           |  | 46   | 77      | 102 | 131  |  |  |  |  |  |  |
| 6562                           |  | 43   | 72      | 91  | 109  |  |  |  |  |  |  |
| 6563                           |  | 34   | 56      | 88  | 102  |  |  |  |  |  |  |
| 6564                           |  | 42   | 65      | 91  | 114  |  |  |  |  |  |  |
| 6565                           |  | 53   | 68      | 101 | 119  |  |  |  |  |  |  |
| MEAN                           |  | 44   | 67      | 95  | 115  |  |  |  |  |  |  |
| S.D.                           |  | 7.0  | 7.9     | 6.3 | 11.0 |  |  |  |  |  |  |
| N                              |  | 5    | 5       | 5   | 5    |  |  |  |  |  |  |

.

# Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1091

TABLE I

# GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

| MALES   | GROUP I | 0 1  | IG/M3  |        |     |     |  |
|---------|---------|------|--------|--------|-----|-----|--|
|         |         | WEEH | OF STU | <br>DY |     |     |  |
| ANIMAL# | ŧ       | 0    | 1      | 2      | 3   | 4   |  |
| 1081    |         | 142  | 115    | 94     | 85  | 76  |  |
| 1082    | 2       | 139  | 120    | 102    | 91  | 79  |  |
| 1083    | 3       | 142  | 114    | 100    | 90  | 80  |  |
| 1084    | L       | 131  | 113    | 93     | 85  | 77  |  |
| 1085    | 5       | 147  | 123    | 102    | 88  | 81  |  |
| MEAN    |         | 140  | 117    | 98     | 88  | 79  |  |
| S.D.    |         | 5.7  | 4.2    | 4.3    | 2.6 | 2.0 |  |
| N       |         | 5    | 5      | 5      | 5   | 5   |  |

18~FEB-2009 19:49

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1092

TABLE I

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

| MALES   | GROUP II | 20   | 00 MG/M | 13  |     |     |
|---------|----------|------|---------|-----|-----|-----|
|         |          | WEEK | OF STU  | JDY |     |     |
| ANIMAL# |          | 0    | 1       | 2   | 3   | 4   |
| 2071    |          | 142  | 123     | SF  | 92  | 81  |
| 2072    |          | 130  | 112     | 102 | 90  | 82  |
| 2073    |          | 134  | 112     | 102 | 90  | 80  |
| 2074    |          | 139  | 114     | 98  | 88  | 78  |
| 2075    |          | 139  | 116     | 98  | 88  | 80  |
| MEAN    |          | 137  | 116     | 100 | 90  | 80  |
| S.D.    |          | 4.7  | 4.4     | 2.3 | 1.6 | 1.4 |
| N       |          | 5    | 5       | 4   | 5   | 5   |

SF=Spilled Feeder

Page 1093

TABLE I

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| TNDTVTDUAL. | TEED | CONSUMPTION | VALUES | (GRAMS/KG/DAY) |
|-------------|------|-------------|--------|----------------|
|             |      |             |        |                |

| MALES  | GROUP I | II 1 | .0000 MG | /мз |     |     |  |
|--------|---------|------|----------|-----|-----|-----|--|
|        |         | WEEK | OF STU   | DY  |     |     |  |
| ANIMAL | ŧ       | 0    | 1        | 2   | 3   | 4   |  |
| 307:   | 1       | 134  | 110      | 96  | 87  | 81  |  |
| 3072   | 2       | 134  | 118      | 97  | 89  | 81  |  |
| 3073   | 3       | 139  | 120      | 95  | 85  | 77  |  |
| 3074   | 1       | 137  | 113      | 98  | 86  | 77  |  |
| 3075   | 5       | 139  | 117      | 97  | 86  | 79  |  |
| MEAN   |         | 136  | 115      | 96  | 87  | 79  |  |
| S.D.   |         | 2.6  | 4.0      | 1.0 | 1.6 | 2.1 |  |
| N      |         | 5    | 5        | 5   | 5   | 5   |  |

.

Page 1094

TABLE I

| TNDTVTDUAL. | FEED    | CONSUMPTION | VALUES | (GRAMS/KG   | /DAY) |
|-------------|---------|-------------|--------|-------------|-------|
| TWDTATDOWD  | 5 5 5 0 | CONSOMETION | VADUES | (Growns) KG | /DAI/ |

| MALES   | GROUP IV | 20   | 000 MG/ | МЗ  | 1001 | VIDOAD PE | ED CONSOMPTION VALUES (GRAMS/ NG/ DAT/ |
|---------|----------|------|---------|-----|------|-----------|----------------------------------------|
|         |          | WEEF | OF STU  | DY  |      |           |                                        |
| ANIMAL# |          | 0    | 1       | 2   | 3    | 4         |                                        |
| 4081    |          | 138  | 115     | 97  | 89   | 81        |                                        |
| 4082    |          | 134  | 115     | 94  | 88   | 80        |                                        |
| 4083    |          | 138  | 112     | 94  | 93   | 82        |                                        |
| 4084    |          | 142  | 120     | 101 | 89   | 79        |                                        |
| 4085    |          | 127  | 105     | 93  | 83   | 76        |                                        |
| MEAN    |          | 136  | 113     | 96  | 88   | 80        |                                        |
| S.D.    |          | 5.5  | 5.4     | 3.3 | 3.9  | 2.1       |                                        |
| N       |          | 5    | 5       | 5   | 5    | 5         |                                        |

Page 1095

TABLE I

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

| MALES  | GROUP VI | MI   | CRO+CON | TROL |     |     |      |
|--------|----------|------|---------|------|-----|-----|------|
|        |          | WEEK | OF STU  | DY.  |     |     | <br> |
| ANIMAL | ŧ        | 0    | 1       | 2    | 3   | 4   |      |
| 605:   | <br>L    | 138  | 118     | 103  | 91  | 81  | <br> |
| 6052   | 2        | 141  | 125     | 110  | 100 | 88  |      |
| 6053   | 3        | 143  | 123     | 101  | 88  | 79  |      |
| 6054   | l        | 142  | 125     | 103  | 89  | 80  |      |
| 6055   | 5        | 226  | 113     | 94   | 84  | 75  |      |
| MEAN   |          | 158  | 121     | 102  | 90  | 80  |      |
| s.D.   |          | 38.2 | 5.3     | 5.8  | 5.7 | 4.7 |      |
| N      |          | 5    | 5       | 5    | 5   | 5   |      |

18-FEB-2009 19:49

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1096

TABLE I

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

| FEMALES | GROUP I | 0 M  | IG/M3  |     |     |     |  |
|---------|---------|------|--------|-----|-----|-----|--|
|         |         | WEEK | OF STU | DY. |     |     |  |
| ANIMAL# | ŧ       | 0    | l      | 2   | 3   | 4   |  |
| 1591    |         | 146  | 122    | 108 | 101 | 91  |  |
| 1592    | :       | 142  | 123    | 99  | 93  | 82  |  |
| 1593    | 1       | 149  | 125    | 110 | 101 | 94  |  |
| 1594    | :       | 143  | 116    | 96  | 89  | 84  |  |
| 1595    | 5       | 142  | 120    | 106 | 96  | 87  |  |
| MEAN    |         | 144  | 121    | 104 | 96  | 88  |  |
| S.D.    |         | 3.2  | 3.4    | 5.9 | 5,0 | 5.3 |  |
| N       |         | 5    | 5      | 5   | 5   | 5   |  |

Page 1097

TABLE I

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

| FEMALES GROUE | II 20 | 00 MG/M | 13     |     |     |
|---------------|-------|---------|--------|-----|-----|
|               | WEEK  | OF STU  | <br>DY |     |     |
| ANIMAL#       | 0     | 1       | 2      | 3   | 4   |
| 2581          | 148   | 123     | 114    | 109 | 97  |
| 2582          | 138   | 111     | 105    | 102 | 102 |
| 2583          | 149   | 125     | 106    | 94  | 90  |
| 2584          | 139   | 121     | 98     | 89  | 80  |
| 2585          | SF    | 115     | 107    | 98  | 96  |
| MEAN          | 144   | 119     | 106    | 98  | 93  |
| S.D.          | 5.7   | 5.8     | 5.5    | 7.6 | 8.4 |
| N             | 4     | 5       | 5      | 5   | 5   |

SF=Spilled Feeder

Page 1098

TABLE I

| INDIVIDUAL | FEED | CONSUMPTION | VALUES | (GRAMS/KG/DAY) |
|------------|------|-------------|--------|----------------|

| FEMALES | GROUP II | I   | 10000 M | G/M3 | INDI | VIDOAD PB | VALUED | (GRAND) RG/ DRT / |      |      |
|---------|----------|-----|---------|------|------|-----------|--------|-------------------|------|------|
|         |          | WEE | K OF ST | UDY  |      |           | <br>   |                   | <br> |      |
| ANIMAL# |          | 0   | 1       | 2    | 3    | 4         |        |                   |      |      |
| 3581    |          | 136 | 118     | 94   | 91   | 86        | <br>   |                   | <br> | <br> |
| 3582    |          | 138 | 114     | 102  | 91   | 85        |        |                   |      |      |
| 3583    |          | 137 | 121     | 102  | 96   | 94        |        |                   |      |      |
| 3584    |          | 144 | 117     | 109  | 98   | 91        |        |                   |      |      |
| 3585    |          | 148 | 129     | 131  | 103  | 102       |        |                   |      |      |
| MEAN    |          | 141 | 120     | 108  | 96   | 91        |        |                   |      |      |
| s.D.    |          | 5.1 | 5.8     | 14.1 | 4.9  | 6.9       |        |                   |      |      |
| N       |          | 5   | 5       | 5    | 5    | 5         |        |                   |      |      |

Page 1099

TABLE I

## GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

| FEMALES       | GROUP IN | 7 20 | 000 MG/ | МЗ  |     |     |       |
|---------------|----------|------|---------|-----|-----|-----|-------|
| WEEK OF STUDY |          |      |         |     |     |     |       |
| ANIMAL#       |          | 0    | 1       | 2   | 3   | 4   | · · · |
| 4591          |          | 150  | 117     | 104 | 94  | 83  |       |
| 4592          |          | 147  | 117     | SF  | 88  | 87  |       |
| 4593          |          | 142  | 115     | 101 | 98  | 89  |       |
| 4594          |          | 139  | 117     | 102 | 101 | 89  |       |
| 4595          |          | 158  | 124     | 112 | 89  | 81  |       |
| MEAN          |          | 147  | 118     | 105 | 94  | 86  |       |
| S.D.          |          | 7.6  | 3.5     | 5.0 | 5.7 | 3.9 |       |
| N             |          | 5    | 5       | 4   | 5   | 5   |       |

SF=Spilled Feeder

Page 1100

TABLE I

| INDIVIDUAL F | FEED | CONSUMPTION | VALUES | (GRAMS) | 'KG/ | (DAY) |
|--------------|------|-------------|--------|---------|------|-------|
|--------------|------|-------------|--------|---------|------|-------|

| FEMALES | GROUP VI | MI   | CRO+CON | TROL |     |     |   |  |
|---------|----------|------|---------|------|-----|-----|---|--|
|         |          | WEEK | OF STU  | DY   |     |     |   |  |
| ANIMAL# | ŧ        | 0    | 1       | 2    | 3   | 4   |   |  |
| 6561    |          | 148  | 126     | 110  | 95  | 92  |   |  |
| 6562    | 2        | 135  | 118     | 104  | 94  | 81  |   |  |
| 6563    | 3        | 134  | 116     | 104  | 99  | 85  |   |  |
| 6564    | ł        | 144  | 126     | 108  | 98  | 86  | · |  |
| 6565    | 5        | 152  | 137     | 111  | 102 | 94  |   |  |
| MEAN    |          | 143  | 125     | 108  | 98  | 88  |   |  |
| S.D.    |          | 7.7  | 8.4     | 3.3  | 3.1 | 5.0 |   |  |
| N       |          | 5    | 5       | 5    | 5   | 5   |   |  |

Page 1101

.

### TABLE J

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| MALES GROU | IPI 0 MG/M3        |                                          |
|------------|--------------------|------------------------------------------|
| animal#    | type of<br>death   | DATE OF WEEK OF STUDY<br>DEATH STUDY DAY |
| 1081       | TERMINAL SACRIFICE | 20-DEC-01 3 27                           |
| 1082       | TERMINAL SACRIFICE | 20-DEC-01 3 27                           |
| 1083       | TERMINAL SACRIFICE | 20-DEC-01 3 27                           |
| 1084       | TERMINAL SACRIFICE | 20-DEC-01 3 27                           |
| 1085       | TERMINAL SACRIFICE | 20-DEC-01 3 27                           |
|            |                    |                                          |

Page 1102

# TABLE J

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### ANIMAL TERMINATION HISTORY

| MALES   | GROUP II 2000 MG/M3 |                                          |
|---------|---------------------|------------------------------------------|
| ANIMAL# | TYPE OF<br>DEATH    | DATE OF WEEK OF STUDY<br>DEATH STUDY DAY |
| 2071    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2072    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2073    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2074    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2075    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |

.

.

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1103

# TABLE J

| AN: | IMAL T | ERMINATION | H | ISTORY |
|-----|--------|------------|---|--------|
|     |        |            |   |        |

| MALES   | GROUP III 10000 MG/M3 | ANIMAL IERMINATION HISTORI |    |  |
|---------|-----------------------|----------------------------|----|--|
| ANIMAL# | TYPE OF<br>DEATH      | DATE OF WEEK<br>DEATH STUD |    |  |
| 3071    | TERMINAL SACRIFICE    | 20-DEC-01 3                | 27 |  |
| 3072    | TERMINAL SACRIFICE    | 20-DEC-01 3                | 27 |  |
| 3073    | TERMINAL SACRIFICE    | 20-DEC-01 3                | 27 |  |
| 3074    | TERMINAL SACRIFICE    | 20-DEC-01 3                | 27 |  |
| 3075    | TERMINAL SACRIFICE    | 20-DEC-01 3                | 27 |  |

Page 1104

TABLE J

GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| MALES   | GROUP IV 20000 MG/M3                    | AL TERMINATION RISTORY |                  |              |  |
|---------|-----------------------------------------|------------------------|------------------|--------------|--|
| ANIMAL# | TYPE OF<br>DEATH                        | DATE OF<br>DEATH       | WEEK OF<br>STUDY | STUDY<br>DAY |  |
| 4081    | TERMINAL SACRIFICE                      | 20-DEC-01              | 3                | 27           |  |
| 4082    | TERMINAL SACRIFICE                      | 20-DEC-01              | 3                | 27           |  |
| 4083    | TERMINAL SACRIFICE                      | 20-DEC-01              | 3                | 27           |  |
| 4084    | TERMINAL SACRIFICE                      | 20-DEC-01              | 3                | 27           |  |
| 4085    | TERMINAL SACRIFICE                      | 20-DEC-01              | 3                | 27           |  |
|         | *************************************** |                        |                  |              |  |

Page 1105

# TABLE J

| MALES   | GROUP VI MICRO+CONTROL | ANIMAL TERMINATION HISTORY |                  |              |  |
|---------|------------------------|----------------------------|------------------|--------------|--|
| ANIMAL# | TYPE OF<br>DEATH       | DATE OF<br>DEATH           | WEEK OF<br>STUDY | STUDY<br>DAY |  |
| 6051    | TERMINAL SACRIFICE     | 20-DEC-01                  | 3                | 27           |  |
| 6052    | TERMINAL SACRIFICE     | 20-DEC-01                  | 3                | 27           |  |
| 6053    | TERMINAL SACRIFICE     | 20-DEC-01                  | 3                | 27           |  |
| 6054    | TERMINAL SACRIFICE     | 20-DEC-01                  | 3                | 27           |  |
| 6055    | TERMINAL SACRIFICE     | 20-DEC-01                  | 3                | 27           |  |

18-FEB-2009 19:50

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1106

# TABLE J

# GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

# ANIMAL TERMINATION HISTORY

| FEMALES G | ROUP I 0 MG/M3     | ANTIME IBRAINATION HISTORY |                  |              |  |
|-----------|--------------------|----------------------------|------------------|--------------|--|
| animal#   | TYPE OF<br>DEATH   | DATE OF<br>DEATH           | WEEK OF<br>STUDY | STUDY<br>DAY |  |
| 1591      | TERMINAL SACRIFICE | 20-DEC-01                  | 3                | 27           |  |
| 1592      | TERMINAL SACRIFICE | 20-DEC-01                  | з                | 27           |  |
| 1593      | TERMINAL SACRIFICE | 20-DEC-01                  | 3                | 27           |  |
| 1594      | TERMINAL SACRIFICE | 20-DEC-01                  | 3                | 27           |  |
| 1595      | TERMINAL SACRIFICE | 20-DEC-01                  | 3                | 27           |  |

÷

.

Huntingdon Life Sciences 00-6129G Genotoxicity Sub-Group

Page 1107

# TABLE J

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES | GROUP II 2000 MG/M3 |                                          |
|---------|---------------------|------------------------------------------|
| ANIMAL# | TYPE OF<br>DEATH    | DATE OF WEEK OF STUDY<br>DEATH STUDY DAY |
| 2581    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2582    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2583    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2584    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |
| 2585    | TERMINAL SACRIFICE  | 20-DEC-01 3 27                           |

Page 1108

## TABLE J

#### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES | GROUP III 10000 MG/M3 | ANIMAL IERMINATION HISTORY |                  |              |  |
|---------|-----------------------|----------------------------|------------------|--------------|--|
| animal# | TYPE OF<br>DEATH      | DATE OF<br>DEATH           | WEEK OF<br>STUDY | STUDY<br>DAY |  |
| 3581    | TERMINAL SACRIFICE    | 20-DEC-01                  | 3                | 27           |  |
| 3582    | TERMINAL SACRIFICE    | 20-DEC-01                  | 3                | 27           |  |
| 3583    | TERMINAL SACRIFICE    | 20-DEC-01                  | 3                | 27           |  |
| 3584    | TERMINAL SACRIFICE    | 20-DEC-01                  | 3                | 27           |  |
| 3585    | TERMINAL SACRIFICE    | 20-DEC-01                  | 3                | 27           |  |
|         |                       |                            |                  |              |  |

.

Page 1109

#### TABLE J

### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES G | ROUP IV 20000 MG/M3 |                  |                  |              |
|-----------|---------------------|------------------|------------------|--------------|
| ANIMAL#   | TYPE OF<br>DEATH    | DATE OF<br>DEATH | WEEK OF<br>STUDY | STUDY<br>DAY |
| 4591      | TERMINAL SACRIFICE  | 20-DEC-01        | 3                | 27           |
| 4592      | TERMINAL SACRIFICE  | 20-DEC-01        | 3                | 27           |
| 4593      | TERMINAL SACRIFICE  | 20-DEC-01        | 3                | 27           |
| 4594      | TERMINAL SACRIFICE  | 20-DEC-01        | 3                | 27           |
| 4595      | TERMINAL SACRIFICE  | 20-DEC-01        | 3                | 27           |
|           |                     |                  |                  |              |

Page 1110

# TABLE J

### GASOLINE ETBE VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES GR | OUP VI MICRO+CONTROL |                  |                  |              |  |
|------------|----------------------|------------------|------------------|--------------|--|
| ANIMAL#    | TYPE OF<br>DEATH     | DATE OF<br>DEATH | WEEK OF<br>STUDY | STUDY<br>DAY |  |
| 6561       | TERMINAL SACRIFICE   | 20-DEC-01        | 3                | 27           |  |
| 6562       | TERMINAL SACRIFICE   | 20-DEC-01        | 3                | 27           |  |
| 6563       | TERMINAL SACRIFICE   | 20-DEC-01        | 3                | 27           |  |
| 6564       | TERMINAL SACRIFICE   | 20-DEC-01        | 3                | 27           |  |
| 6565       | TERMINAL SACRIFICE   | 20-DEC-01        | 3                | 27           |  |